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Abstract In this paper, we explore how decentralized local interactions of au-
tonomous agents in a network relate to collective behaviors. Earlier work in this area
has modeled social networks with fixed agent relations. We instead focus on dynamic
social networks in which agents can rationally adjust their neighborhoods based on
their individual interests. We propose a new connection evaluation theory, the Highest
Weighted Reward (HWR) rule: agents dynamically choose their neighbors in order to
maximize their own utilities based on rewards from previous interactions. We prove
that, in the two-action pure coordination game, our system would stabilize to a clus-
tering state in which all relationships in the network are rewarded with an optimal
payoff. Our experiments verify this theory and also reveal additional interesting pat-
terns in the network.

Keywords Social networks - Dynamic networks - Emergence of social norms -
Local social interactions - Pure coordination game

1 Introduction

Social simulation is a class of simulations used to study social behavior and phenom-
ena (Axelrod 1997). With advances in modern technology, computer social simula-
tion is becoming a more and more important tool in today’s research. Large-scale
simulation experiments, which might in the past have taken researchers months or
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even years, can now be run within minutes. Computer simulation has not only saved
researchers a great amount of time but also enabled them to study numerous macro
topics that were impossible to study experimentally in the past. In particular, the
multi-agent system (MAS) has emerged, facilitating the study of large-scale social
networks.

Agent-based social simulation (Davidsson 2002) uses agents to model such social
entities as people, groups and towns. The agents usually have limited intelligence
and memory, so that they adjust their future behaviors based on their environment.
The simulation has been run on various kinds of social networks (Dorogovtsev et al.
2008), which simulate various social structures (Newmann 2003). Much work has
been done in this area and many results have gained attention, such as the six-degree
separation theory derived from the small-world network (Watts 1999), the networks
of movie actors, in which edges demarcate that two actors performed in the same
movie (Watts 1999), the friendship networks of high school students (Fararo and
Sunshine 1964), the web of human sexual contacts (Liljeros et al. 2001), and the
scientific citation network (Redner 1998).

In reality, simulations using the MAS can be conducted in two ways: One is to
build a model as realistic as possible for a specific scenario, such as the moving
crowds in an airport (Turner and Penn 2002). The other is to build an abstract model
that captures the essence of human activities and can be used to model many differ-
ent social networks of the same kind. For instance, Kempe et al. (2003) provide a
constant-factor approximation algorithm to test the manner in which an innovation
spreads in a social network. Our research belongs to this latter category.

Researchers working on an abstract social model usually focus on the study of
“generative social science” (Epstein 1999)—that is, how the decentralized local in-
teractions of autonomous agents generate social norms. A social norm is defined as
a regular behavior that is a solution to a recurrent or continuous social cooperation
problem (Younger 2004; Dignum 1999; Kittok 1995; Lewis 1969). One basic ques-
tion we might also ask about social norms is whether the agents in the social network
will eventually agree on one action. Will the entire network come to one solution?
In different networks and under different algorithms, results can vary drastically. The
agents might converge into various patterns and at different times.

Generally speaking, two categories in this area study the emergence of social
norms. The first category studies social norms in static networks (Jiang and Toru
2007). A network is called static when the edges are never created or removed af-
ter the generation of the graph. In this category, one of the most significant findings
is by Shoham and Tennenholtz (1997), who proposed the Highest Cumulative Re-
ward (HCR) rule. In each time step, an agent adopting the HCR rule switches to a
new action if and only if the total rewards obtained from that action in the last time
step are greater than the rewards obtained from the currently chosen action in the
same time period. For instance, a customer would only switch to another frequent-
flyer program when the rewards from an alternate program surpassed those offered
by both her current provided and its other competitors. The authors simulated various
networks under different parameter configurations (e.g., memory update frequency,
memory restart frequency, and both) to experiment on an agent’s effectiveness in
learning about its environment. They also theoretically proved that under the HCR
rule the network will always converge on one social norm.
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Jordi Delgado’s (2002) Generalized Simple Majority (GSM) rule is another im-
portant finding in this “static” category of social norms. Agents obeying the GSM
rule will change to an alternative strategy if they have observed more instances of
it in other agents than their present action. This rule generalizes the simple majority
rule (Walker and Wooldridge 1995). As the randomness 8 — oo, the change of state
will occur as soon as more than half of the agents are performing a different action.
In this case, the GSM rule will behave exactly as the simple majority rule does.

The second category of research on agents’ social behavior is the study of evolu-
tionary or dynamic networks (e.g., Borenstein and Ruppin 2003; Zimmermann and
Eguiluz 2005; Jin et al. 2001; Skyrms 2004). In a dynamic network, edges are created
and removed as the network evolves. In today’s world, many important virtual net-
works, such as e-commerce networks, SNS (Social Networking Service), etc., have
fewer stable connections among agents and thus their network structures constantly
change. Here researchers investigate the possible ways in which an agent population
might converge on a particular strategy. Unfortunately, strong assumptions about the
agents and their connections to nearby agents (a.k.a. their neighbors) usually make
such experiments unrealistic. For example, agents often have no control over their
neighborhood. Also, agents do not employ rational selfish reward-maximizing strate-
gies but instead often imitate their neighbors. Finally, agents are often able to see the
actions and rewards of their neighbors, which is unrealistic in many social settings.

To address the above problems, Zhang and Leezer (2009) developed the Highest
Rewarding Neighborhood (HRN) network model, which enables agents to update
their connections through a rational strategy. In this way, any static network can be
easily transformed into a dynamic network through the HRN rule. The HRN rule
allows agents to learn from their environment and compete in networks. Unlike the
agents who can observe their neighbors’ actions and imitate them (e.g., Borenstein
and Ruppin 2003), HRN agents employ selfish reward-maximizing decision-making
strategy and are able learn from their environment. Under the HRN rule, cooperative
behavior emerges even though agents are selfish and attempt only to maximize their
own utility, because agents are able to break unrewarding relationships and are thus
able to maintain mutually beneficial relationships. This leads to a Pareto-optimum
social convention, in which all connections in the network are rewarding.

This paper proposes a Highest Weighted Reward (HWR) rule, an extension of the
HRN rule (Zhang and Leezer 2009). In the HRN rule, the agent values its neighbors
based on the total rewards collected from them in the past, with all interactions be-
ing weighted equally throughout the agent’s history. However, such an emphasis will
cause the agent to focus too much on the history of its neighbor and fail to respond
promptly to the neighbor’s latest action. Motivated by this fact, we have developed
the HWR rule. HWR allows the agents to use a discount factor to devalue past in-
teractions with their neighbors. The more recent the interaction is, the more heavily
the corresponding reward is weighted in the evaluation function. In our research,
we identified certain patterns from the simulation results and then demonstrated the
existence of the pattern both theoretically and empirically. Later, we compared the
differences between our model and classic static network.

To our knowledge, we are one of the first groups to study the emergence of social
norms under the self-interest setting in dynamic networks. The proposed model incor-
porates the individual agent decision model into networks with changed relations. We
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prove that in the two-action pure coordination game, in which players receive higher
rewards when they cooperate and choose the same action, our system will stabilize
to a clustering state in which all relationships in the network are rewarded with the
optimal payoff. This research contributes in numerous ways to social-norms research.
By employing agents who learn from their environment we provide a more complex
setting in which to analyze the spread of behavior in social networks and the evolu-
tion of a social system. This work also contributes to the fields of Social Simulation
by researching the emergence of social norms in networks of selfish agents.

The rest of the paper is organized as follows. Section 2 reviews the literature on
existing models that lead to social norms emerging from a social network. Section 3
defines the HWR rule. Section 4 defines our argument regarding stable pattern of the
proposed HWR rule. Section 5 is the proof that, in the two-action pure coordination
games, our system will stabilize in a clustering state and at that time all relationships
in the network are rewarded with the optimal payoff. Section 6 presents a series of
experiments to evaluate the concept, the model and the manner in which our system
stabilizes in a stable state. Section 7 offers a discussion of our findings, bringing
together the proof presented in Sect. 5 with our experiments presented in Sect. 6. In
the final section, we summarize our findings and offer a few possible avenues for
future research.

2 Related work

Social networks have long been an important research topic in many areas. A deep
understanding of the network can shed light upon many key issues in sociology and
ecology studies. Especially in recent years, modern technology has enabled more and
more virtual networks to be layered over existing physical networks. This change
has made the study of networks even more important. However, in many cases, the
scale of a given network is so large that no researcher can afford to manually collect
data and carry out related studies. In other cases, it is often too difficult to track the
development of a network, such as the evolution of an animal population over many
generations. As a result, a science of social network simulation has emerged and is
becoming a more and more convenient tool for network researchers. With the help
of network simulation, researchers are now able to study networks of enormous scale
through simulations that can be finished in days or even hours. Network simulation
also enables researchers to test and verify earlier network hypotheses.

In recent years, researchers from different areas have begun to show more and
more interest in network models. Coming from various backgrounds, they have
framed network problems in very different ways and have attempted to solve them
with very different approaches (Banks 2009). Though this diversity of methods has
caused confusion and inefficiency, each approach has also had its own pros and cons.
One might argue that the social network is simply too complex a problem, that it
is nearly impossible to unify different approaches into one single area. As a result,
interdisciplinary approaches are often a must for social network study. Such inter-
disciplinary approaches have led to significant achievements. For example, people
have used statistical models to capture the group patterns of African elephants, suc-
cessfully supporting an existing ecological hypothesis (Vance et al. 2009). While the
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“fission-fusion” societies can be viewed as a classic network-clustering problem, the
combined efforts of both statisticians and biologists have offered a deeper and more
significant understanding of elephants. Similar research has also been carried out in
other areas, such as brain networks in medical science (Chen et al. 2009).

Because of the importance of network studies, researchers have developed var-
ious kinds of models. In most networks, nodes usually share simple common
properties. Consequently, the development of network models usually focuses on
the relations among nodes. Most network models can be represented by a cer-
tain distribution of edges among groups of nodes. Therefore, many mathematical
models have been developed to capture the essence of a network through repre-
sentation of the edges among nodes, often with significant findings (Hoff 2009;
Handcock and Morris 2009). With the help of mathematical tools, researchers have
managed to develop random samples of certain network types or to predict hidden
information and complete real-world network models.

Some researchers have taken such work a step further and studied the network
models with dynamic connections. Though much research has focused on classic
networks, such as random networks, small-world networks and scale-free networks,
connections in most of these models tend to be static. To be sure, the classic mod-
els have been proven very useful in many real-world models, though it is doubtful
whether they are a good fit for many modern dynamic networks. One common fea-
ture many modern virtual networks share is the unstable connections among network
nodes. People constantly add and drop friends and change their neighbors in virtual
networks, such as SNS. Zhang and Leezer (2009) have suggested the use of dynamic
connections to capture the evolutionary essence of modern networks.

When developing new network models, researchers are forced to make assump-
tions and use them as the cornerstone of their model. For example, Zhang and Leezer
made the simple assumption that all agents in a network are selfish and that they try to
maximize their interests by changing their neighbors. The influence of prior knowl-
edge has also been carefully studied by researchers. Frantz et al. (2009) have argued
that the accuracy and variance of collected data can diverge greatly in different net-
work models. Prior knowledge about a network model, such as information about its
structure or scale, can help us to better evaluate the quality of collected data.

Once a certain network model is built, its corresponding special properties deter-
mine how interesting and meaningful the model is. Researchers have studied a wide
range of properties for network models and have set up corresponding theoretical
frames (Ehrhardt et al. 2008). For example, researchers have taken a keen interest in
the robustness of networks. After a certain network topology is found, researchers
are often interested to know how long the structure can be sustained under various
violations and attacks. The robustness of many classic network models, such as the
small-world network and the power-law network, have been thoroughly tested by re-
searchers (Centola 2009). Though the research on macro-level properties is meaning-
ful, studies about micro-level agent interaction can also offer a deeper understanding
of network models. Because a network is no more than a set of agents interacting
with one another, agents’ local decisions undoubtedly have a huge influence over
the entire network. For example, researchers have shown that the agents’ local de-
cision heuristics have a strong connection with the topology of the network (Pujol
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et al. 2005a). As a result, similar research has been carried out around local agent
interactions, providing a deeper understanding of a network’s structure.

One of the most frequently discussed properties is the emergence of social con-
ventions. Social conventions can be observed in many real network cases. The study
of social conventions, for instance, can help to shed light on many real-world prob-
lems. For example, when viewing each node as a human being, and the states as their
opinions, social conventions can be used to study the spread of rumors (Acemoglu
et al. 2010). With different models or different parameters set up, people can further
various cases of rumor spreading and come up an effective solution to stop it in real-
world cases (Molchanov and Whitmeyer 2011). We can likewise study the spread of
diseases and other similar topics using social conventions.

There are many key factors that influence the form of social conventions. One
of the most significant ones is local decision heuristics. One common assumption is
that agents only have limited knowledge about their environment. They only know,
for instance, who their neighbors are and what actions they are currently adopting.
This limitation has left researchers with an interesting question: whether a network
can reach a social convention without the administration of a central authority. Re-
searchers have tried to guarantee the emergence of social convention through different
approaches. A common and effective approach is to make a simple and reasonable
model for an agent’s local decision heuristics and begin to infer the emergence of so-
cial conventions from that point (Shoham and Tennenholtz 1997). During this kind of
inference, researchers have to choose their assumptions carefully. If the assumption
is too strong, then the decision model may appear less realistic. On the other hand, if
the assumption is too vague, it would be much more difficult to finish the inference.

Another approach to the study of social conventions is the investigation of network
structures. One of the common properties researchers pay special attention to is the
edge degree distribution. Given a certain simple game, researchers are able to evaluate
the probability of the emergence of social conventions (Lopez-Pintado 2008; Jones
2008). Though in this approach the emergence of social conventions is not guaran-
teed, such flexibility allows us a deeper and closer analysis of many real-world cases.
Without worrying about whether a social convention is reachable, people can focus
on building a reasonable local decision model for agents before investigating the pos-
sibility of a social convention.

Even when a social convention has been reached, there are still many interesting
properties of the convention that need to be further studied. For example, one inter-
esting question may be the speed at which a social convention is reached (Delgado
2002). In the real world, a social convention that takes a million years to reach may
have little practical meaning. Similarly, researchers could investigate how robust the
social convention is; whether it exists in a final static state. or whether the agent ends
up with an efficient action decision with optimal rewards. It appears in some cases
that agents choose attractive actions rather than efficient actions in order to reach
the social convention (Pujol et al. 2005b). Whether this state is desirable and how to
reach/avoid such cases are both interesting related questions.

Researchers have also noticed the emergence of not one but multiple social con-
ventions. Networks can reach Pareto-optimum in many ways, and multiple social
conventions can usually guarantee maximum rewards too. When the agents in a net-
work are polarized and form their own closed groups, local conventions might also
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lead to the global Pareto-optimum layout. It is also easy to discover many real-world
examples of such network patterns. Human beings are likely to form opposing groups
in many social areas, such as political parties, rival organizations, etc., and have been
studied by researchers as the polarization of a network (Flache and Macy 2011).

3 Highest Weighted Reward (HWR) neighbor evaluation rule
3.1 The HWR rule

The HWR rule is based on a very simple phenomenon we experience in everyday life:
human beings tend to value recent events more than those events that had happened
further in the past. To capture this phenomenon, we introduce a time discount factor,
which is usually smaller than 1, in order to linearly devalue the rewards collected
from past interactions. When the time discount factor equals 1, the HWR rule will
behave in the same way as the HRN rule. Notice that both the HWR and the HRN
rules are neighbor evaluation rules—that is, the purpose of these rules is to help the
agents value their connections with neighbors more wisely. In other words, these
rules can only make decisions regarding connection choosing, but will not influence
the agent’s action when choosing decisions.

According to the HWR rule, an agent will maintain a relationship if and only if
the weighted average reward earned from that relationship is no less than a speci-
fied percentage of the weighted average reward earned from every relationship. Let’s
carefully go through one cycle of the HWR evaluation step by step.

1. For each neighbor, we have a variable named TotalReward to store the weighted
total reward from that neighbor. In each turn, we update the TotalReward through
the following equation in which “c” represents the discount factor:

TotalReward = TotalReward x ¢ + RewardInThisTurn @))

2. In a similar way, we keep a variable named GeneralTotalReward to store the
weighted total reward the agent receives from all neighbors in the history, and
TotalRewardInThisTurn to store the total rewards collected from all neighbors. In
each turn, we update the GeneralTotalReward through the following equation:

GeneralTotalReward = GeneralTotalReward x ¢
+ TotalRewardInThisTurn/NumOfNeighbors  (2)

Here TotalRewardInThisTurn needs to be divided by the NumOfNeighbors in each
turn in order to find the average reward per connection. Since we want to calculate
the average reward of all interactions, the total reward in each round needs to be
divided by the number of interactions in that turn.

3. When we start to choose non-rewarding neighbors, we calculate the average re-
ward for every agent. The AvgReward is calculated in the following way: suppose
the agent has been playing with the neighbor for n turns, then:

TotalReward _ TotalReward

1+C+C2+'”+C"_1_ 1—c?

1—c

AvgReward = 3)
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4. Here we calculate the average total reward in a similar manner to step 3:

GeneralTotalReward _ GeneralTotalReward
l+c+e2+-dent ™ ==

1—c

AvgTotalReward = @)

5. Finally, we compare the ratio of AvgReward/AvgTotalReward with threshold 6. If
the former is greater than the latter, then we keep the neighbor; if not, we regard
that agent as a bad neighbor. In this way, the agent can evaluate its neighbor with
an emphasis on recent history. The rule is as follows:

. AvgReward .
if ‘W > 9, keep the nelghbor (5)
Otherwise, disconnect bad neighbor

The above explanation assumes an ideal environment in which agents have an
infinite amount of memory for ease of exposition. In reality and in our experiments,
agents have a limited amount of memory and can only remember their interactions
for a certain number of turns.

3.2 Discount factor range

Generally speaking, the HWR rule could work with different games and in various
networks. Because this rule only adds a dynamic factor, it does not contradict other
aspects of the network. However, in some special cases, a certain experiment setup
might make a discount factor value meaningless. Assume we are playing a pure co-
ordination game (Erve and Roth 1998) with a payoff table (C: Cooperate; D: Defect)
(see Table 1 in Sect. 6.1 for details about the game):

C D
cC 1 0
D 0 1

Also assume the agents only want to keep the neighbors whose average reward
is positive for them. In such a case, no matter how many rounds an agent has been
playing with a neighbor, the agent’s most recent reward will continue to dominate the
whole reward sequence. To be more specific, if an agent receives a reward of 1 from
a neighbor in their last interaction, but has constantly received —1 in the previous n
trials, then the cumulative reward willbe 1 — ¢ — ¢ — --- — ¢". If ¢ is too low, the
cumulative reward will still be larger than 0. We can find the range of ¢ through the

following derivation:

l—c—c*—- =" >0
= l>c+c+-+c"
1 n
1>c¢ te (6)
1—-c

Since when n — oo, ¢" — 0, then
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c

= 1
>1—c

= ¢<05 @)

Based on this, when ¢ < 0.5, the latest reward has a huge influence over the whole
history. Therefore, we usually limit ¢ in range of 0.5 to 1. In fact, for most cases ¢
will take a value much higher than 0.5. Because the past rewards have been devalued
exponentially, a small ¢ value will cause the past rewards to be practically ignored
very soon. In our common experiment setup, we let the agent have a memory size
of 30. In this case, if ¢ = 0.5, we see the oldest action be devalued by a factor of
0.5%° ~ 1.86E-9, which makes the reward totally insignificant. In fact, even for a
relatively high ¢ value, such as 0.9, the last factor will still be as small as 0.9% ~
0.047. Therefore, just as past rewards are devalued too heavily, we usually keep the
¢ in the range of 0.8 to 1.

4 Pattern predictions
4.1 Argument

Based on the HWR rule, we make a few predictions about the outcome of the network
pattern.

Argument Given a pure coordination game, placing no constraints on the initial
choices of action by all agents, and assuming that all agents employ the HWR rule,
then the following holds:

For every ¢ > 0 there exists a bounded number M such that if the system runs for M
iterations then the probability that a stable clustering state will be reached is greater
than 1 — ¢.

If astable clustering state is reached, then all agents are guaranteed to receive optimal
payoff from all connections.

By convention, a cluster refers to a set of users who are densely connected to each
other. In order to further clarify the argument, the following definitions are given:

Stable Clustering State: A network reaches a stable clustering state when all the
agents in the network belong to one and only one closed cluster.

Closed Cluster: A set of agents forms a closed cluster when no connection exists
between any agent in the set and another agent outside of the set, when all the
agents in the set are performing the same action.

Basically, what the argument claims is that the whole network will eventually con-
verge into one single cluster of the same action or two clusters with different actions
and that, once in such a state, the rewards collected from the network will be maxi-
mized.
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5 Proof

There are some special networks that will never reach a stable end state. Researchers
have proved under most circumstances that a static network will reach convergence
when agents adopt the simple majority rule. However, during our research we dis-
covered certain networks that would never converge. The most simple one can be
referred as the “traffic light,” which occurs in a network containing only two agents.
At the beginning, the two agents are connected to each other and perform different
actions. Because each agent has only the other agent as a neighbor, both will change
their action in the next turn based on the simple majority rule. Apparently, these two
agents will keep repeating this process and flipping between two actions. As a result,
the network can never reach convergence. Even though this is a special case in a static
network, dynamic networks feature the same problem. If our network is initialized as
a complete network (though, theoretically speaking, it is unlikely that this situation
would in fact happen), then the network will remain static, because it is impossible to
add more connections between any pair of agents (because all agents are connected
to each other). Accordingly, the special case we just pointed out is an extremely rare
but valid case for our model.

Due to the existence of these special cases, not all networks will reach a stable
clustering state. Inspired by Shoham and Tennenholtz’s (1997) work, we therefore
argue that as the time step approaches infinity, the probability of a network reaching
the stable clustering state will also approach 1. In the next section, we show our
argument in detail. In order to make our argument easier to understand, here we first
explain its basic idea. The idea is very similar to the logic of the classic monkey and
Shakespeare problem. Let a monkey randomly type on a keyboard. Given infinite
time, the monkey will eventually finish a work of Shakespeare. In fact, this statement
has been proved through computer simulation recently.! Our idea is similar: given
a specific process that can happen with a very low probability and infinite time, the
probability that this process can happen will approach 1. Our argument contains three
major parts. First, a starting state that should be valid at any time step throughout
the trial; second, an end state, which is also the goal state of the argument; third, a
specific process that will lead the system from the starting state to the end state. In
our argument, the starting state is a normal random state in the system. The goal state
is the stable clustering state. We also describe the specific process in greater detail in
our argument.

5.1 Definition

We have the following definitions.

e A; denotes the ith agent in the network.
e a; denotes the action choice for agent A;. In coordination games, a; has binary
values representing different action choices.

For details, please check the original article at http://www.jesse-anderson.com/2011/08/a-few-more-
million-amazonian-monkeys/.
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e R;; denotes the link between agent A; and agent A ;.

e N; denotes agent A;’s neighborhood. If A; € N;, then there exists a link R;; be-
tween the two agents.

e C; denotes agent A;’s coordinating neighbors. C; € N;. If Aj € C;, thena; = a;.

e C; denotes agent A;’s non-coordinating neighbors. C; € N; and C; N C; = ¢. If
Aj € C;, then aj #a;.

e We call agent A; a majority coordinating neighbor if |C;| > C;|; we call agent A;
a majority non-coordinating neighbor if |C;| < |C;|.

Notice that any agent in the network must fall into one of the above two categories.

e We say a network is in a stable clustering state if for any agent A; in the network,
ICi1=0. _

e We say a group of agents D form a closed cluster if for any agent A; € D, |C;| =0,
and forany A; € C;, A; € D. Also, for any pair of agent A; and A}, a; =a;.

e We say an agent has a free connection when the agent broke one old connection
and gains the right to connect to a new neighbor.

e We call an agent a free action agent when it is possible for the agent to become
either a majority coordinating neighbor or a majority non-coordinating neighbor
by connecting to different new neighbors.

e We define whipping as the following process: every time that a free action agent
looks for new neighbors and only connects to the agent who performs different
action from it. In this way, the agent will keep flipping between the two possible
actions. Because the agent’s neighbors might have a high tolerance for the rela-
tionships between them and the agent, even when they perform different actions,
the connection will not be broken immediately. Therefore, we allow the agent’s
neighbor go through the whipping process too. We let the agent’s neighbors keep
flipping between the two possible actions so that each time the agent and its neigh-
bors use a different action. In this way, the reward for these connections will be
constantly 0. After at most k turns, the agent will lose all of its neighbors and
become isolated.

5.2 Theorems and proofs
We propose the following assumption:

Assumption In a two-action coordination game, if the network has not reached a
stable clustering state yet, then there will always be connections broken between
agents playing different actions. And there always exists agents adopting different
actions with free connections.

Theorem 1 If in a network all agents are majority coordinating neighbors, then it is
possible that the network will reach stable clustering state in k turns.

Proof for Theorem 1 1If we only allow the agent to connect to the same action agents,
then after k turns the agents will only keep a connection with the neighbors who
adopt the same action as them. In this way, for any agent A; we see |C;| =0, and the
network reaches the stable clustering state. O
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Theorem 2 If a network has at least one closed cluster, then it is possible for the
network to reach a stable clustering state within g(n) turns, where n is the number of
agents in the network.

Proof for Theorem 2 We prove this theorem by case analysis. First we check whether
there exists any majority non-coordinating agent. If one doesn’t exist, then by Theo-
rem 1 we know it’s possible for the network to reach stable clustering state in k turns.
If there exists at least one majority non-coordinating agent, we select one and check
whether this agent is a free action agent. If not, we pull free connections from non-
coordinating agents to make the agent a free action agent. Then we let all of its free
connections connect to a closed cluster when they try to link to new neighbors. If there
is no closed cluster at the moment, we can change the current agent into a closed clus-
ter through the whipping process. In this way, the original majority non-coordinating
agent forms a closed cluster by itself. When the majority non-coordinating agent tries
to connect to the closed cluster, and if the agent has more free connections than the
agents in the closed network, then we can let the majority non-coordinating agent
go through the similar process we describe above, except this time we will make the
agent keep one free connection at last and use that connection to connect to the closed
cluster. In this way, the agent becomes part of the closed cluster. We repeatedly run
the above steps until there is no more majority non-coordinating agents left in the
network. Then by Theorem 1, the network can reach a stable clustering state in k
turns. g

Theorem 3 Given a pure coordination game, placing no constraints on the initial
choices of action by all agents, and assuming that all agents employ the HWR rule,
then the following holds:

e For every € > 0 there exists a bounded number M such that if the system runs for
M iterations then the probability that a stable clustering state will be reached is
greater than 1 — €.

e Once the stable clustering state is reached, it will never be left.

e [f a stable clustering state is reached then all of the agents are guaranteed to
receive an optimal payoff from all connections.

Proof for Theorem 3 Similar to the proof for Theorem 2, we check whether there
exists any majority non-coordinating agent first. If one does not exist, then by Theo-
rem | we know that there is a probability p = 1/f (n) the network will reach a stable
clustering state in the next turn. If there is at least one majority non-coordinating
agent, then we repeat the processes described above in order to make the agent be-
come a closed cluster or part of an existing closed cluster. For each agent, there
is a probability p = 1/g(n) that this process can happen in A (n) turns. We repeat
the above process until there is no majority non-coordinating agent or the network
reaches stable clustering state.

As a result, if the system runs for M = x x [n x g(n) x h(n) + f(n)] iterations
then the probability that a stable clustering state will not be reached is at most e ™*.
Taking x > —log(¢) yields the desired result.
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For the second part of Theorem 3, because there only exist connections between
agents who perform the same actions when the stable clustering state is reached, every
connection will be optimal and no agent will try to break any connection. Therefore
the stable clustering state will never be left.

For the third part of Theorem 3, since all connections are optimal, all agents are
also guaranteed to receive an optimal payoff from all connections. O

6 Experiment
6.1 Experiment settings

All experiments are conducted in an environment that has the following properties:

e All trials run in a random network having 1000 to 10,000 agents.

e The number of connections in the network remains the same throughout the trial.

e Every time a connection is broken, both agents have a 50% chance to gain the right
to connect to a new neighbor. But only one of them will eventually make a new
neighbor. This restriction guarantees the number of connections remains the same.

e All agents have a limited memory size.

e All agents adopt the ideal learning rule. That is, the agent will always choose the
action that the majority of its neighbors used in the last turn. If the same number of
neighbors adopts different actions, then the agent will not change its current action.
In other words, the agents obey the simple majority rule.

e The agents can only see local information. In other words, they do not know the
payoff matrix and the identities of their neighbors.

e Our domain is the two-action Pure Coordination Game. It is a simple game in
which agents receive a reward in the event they choose the same strategy and a
penalty in the event they choose different strategies. Table 1 shows the payoff ma-
trix for the Pure Coordination Game we use.

Notice that there are two equal Nash Equilibrium in the game: (Cooperate, Coop-
erate) and (Defect Defect). The optimal strategy depends on the strategy of an agent’s
neighbor. However, when this game is played with multiple neighbors, the optimal
strategy is the strategy adopted by the majority of an agent’s neighbors.

All code was written, compiled and ran in Ubuntu 9.10 with GCC 4.4.1. One test
trial with 10,000 agents and an average neighborhood size of 100 takes approximately
90 seconds to run for 30 time steps on a HP HDX-16 laptop. The laptop has an Intel
Core 2 Dual-Core 2.13 GHz CPU and 3 GB RAM.

Table 1 Payoff matrix for the

pure coordination game Cooperate Defect
Cooperate 1,1 0,0
Defect 0,0 1,1
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Table 2 Parameters for

Experiment 1 (Fig. 1) Number of Runs 50
Timesteps 30
Network size 5000
Neighborhood size 10
Reward discount ¢ 0.9
Threshold 6 0.9
Memory size 30
Fig. 1 Network converges into Experiment 1 ==« Number of C
two clusters 14000. Agents
12000.4
\
10000. e < Number of D
8000. \ Agents
\
6000. \
2000. \ Number of
| . Perfect Agents
~ -
0.4t T T T T T T T T e == Number of
1357 911131517192123252729 Broken
Timesteps Connections

6.2 Two-cluster stable clustering state

First, we show the emergence of the stable clustering state. Clusters refer to the
groups of agents that have chosen the same action. Because the final outcome might
have two different patterns with either one or two final stable clusters (i.e., C: Cooper-
ate or D: Defect), we present the patterns in two parts. First, let’s examine a situation
in which the network eventually converges on a single cluster. The experiment is
conducted using the parameters presented in Table 2.

Figure 1 shows the average results collected from 30 trials. The number of broken
connections starts off at a little over 12,000 broken connections and the two clusters
both linger at around the 2500 Agent mark. The number of broken connections and
perfect agents intersect around time step 8. We see that at the end of each trial, all
of the agents have split into two camps and entered into a unique stable clustering
state. First, we notice that the lines that represent the numbers of C and D agents
almost merge together in the middle of the plot. Because the pay-off matrix for C
and D actions is symmetrical and there is no difference between these two actions
except different symbolic names, the average numbers of C and D agents should be
both around 2500, just as the plot shows. Here, in order to capture the dynamics of
the network, we introduce a new term named perfect agent. An agent will be counted
as a perfect agent only when all of its neighbors play the same action as it does. In
Fig. 1, while the numbers of C and D agents remain almost constant, the number
of perfect agents rises steadily from O to 5000 throughout the trial. The increasing
number of perfect agents shows that the network is evolving from a random state
towards a stable clustering state. At the same time, we see that the number of broken
connections is steadily dropping towards 0. Because more and more agents become
perfect agents, connections between neighbors are broken less and less frequently.
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Table 3 Parameters for

Experiment 2 (Fig. 2) Number of Runs 50
Timesteps 30
Network size 5000
Neighbor size 100
Reward discount 0.9
Threshold 0.9
Memory size 30
Fig. 2 Network converges into Experiment 2
one cluster 140000.
120000.{}
\
£ 100000. |-+ = == Number of
& : C Agents
< 80000}
5 \
& 60000. -
§ 40000. 1 =+ Number of
‘ D Agents
20000. .
ol e e e e

1357 911131517192123252729
Timesteps

6.3 One-cluster stable clustering state

Now we present the experiment results that all of the agents adopted the same ac-
tion lasting the end and merged into one cluster. In order to show the results more
clearly, we have run 50 trials and selected 23 trials in which C eventually becomes
the dominant action. The experiment is carried out using the parameters presented in
Table 3.

In Fig. 2, the number of C agents rises steadily while the number of D agents drops,
until the entire network converges into a single cluster. The number of perfect agents
and broken connections behaves in a manner similar to that in Fig. 1. The difference
between this experiment and Experiment 1 is that the number of neighbors one agent
can have has increased. Because each agent receives more input per time step due to
an increased number of friends, agents will be more likely to change their action to
that of those around them. Therefore, in this experiment, because we increased the
amount of neighbors, the network shows a clustering around one decision.

6.4 Pattern possibilities with various network sizes

The above experiments demonstrate that the network sometimes converges into one
single cluster and sometimes into two clusters. After a series of simulations, we found
out that the size of neighborhood has a significant influence over the probability that
a network will converge on one cluster or not. In order to show this, we created 16
networks with varying friend sizes (but always maintaining 1000 agents as the net-
work size) and ran 50 trials with each network. The parameters presented in Table 4
were used.
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Table 4 Parameters for

Experiment 3 (Fig. 3) Number of Runs 50
Timesteps 30
Network size 1000
Neighbor size Varies
Reward discount 0.9
Threshold 0.9
Memory size 30
Fig. 3 Relationship between Experiment 3
network size and network 30.
pattern
25. ——
g 2. \ ="
£ \ "
2 15 +
3 X = == 1 Cluster trials
E 10
z ' ,l \\ 2 Cluster Trials
[
> ' \
[}
0 L T T T T
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Number of Neighbors

Figure 3 shows the number of one-cluster trials and two-cluster trials using each
network. As the size of the network increases, the probability that the network will
converge into one single cluster rises. There is a tipping point around neighborhood
of size 15, when the neighborhood size is approximately 1.5% of the size of the
whole network. In such cases, the network can converge on one or two clusters with
approximately even possibility.

This phenomenon can be explained by the following. The size of a neighborhood
directly determines the influence the majority action in the network places upon a
single agent. The bigger the neighborhood is, the more the entire network influences
the agent. Let’s try to understand this from two extreme cases. Imagine the experi-
ment is carried out in a complete network, in which every single agent is connected
to all of the other agents in the network. In such a case, the agent’s choice of action
is affected by the actions of all the other agents, and, based on the simple majority
rule, all the agents will immediately switch to the dominant action in this turn. On the
other hand, if we let the agents keep a neighborhood of size 0, that means no agent
has any neighbors, and then each agent will be under no influence from the network
as a whole and will just stick to its current action. With similar logic, we see that the
size of a neighborhood actually determines the influence each agent receives from the
network and also the possibility that they will switch to the dominant action in the
network. Therefore, the possibility that the agent will adopt the dominant action in the
network and become one single cluster increases with increased neighborhood size.
The following parameters in Table 5 were used for the second part of Experiment 4.
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Table 5 Parameters for

Experiment 4 (Fig. 4) Number of Runs 30
Timesteps 30
Network size 2000
Neighbor size 10
Reward discount 0.9
Threshold 1.0
Memory size 15
Fig. 4 Network with threshold Experiment 4: Threshold 1.0, Memory size 15
1.0 and memory size 15 6000
5000
4000 \ == Number of Perfect Agents
3000
\ == Number of Broken Connections
2000 - \/‘
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Timesteps

6.5 Threshold and broken connection peak

As one might notice, in the preceding trials we used a threshold of 0.9. We chose a
relatively low value here in order to make the agents more tolerant of their neighbors.
(We discuss tolerance further in the later part of this paper.) In this case, as long
as the weighted average reward from a certain neighbor is higher than 90% of the
weighted average reward from all of the other agents, the neighbor will be counted
as a good one and the connection will be reserved. In general, we expected that a
higher threshold correlates with a lower tolerance. We have no concrete model for
tolerance but we know that having higher thresholds makes agents both stricter about
their and more likely to break up with their uncoordinated friends. This then implies
that agents have a lower tolerance for their friends and exhibit no forgiveness despite
having a good history with the said agent.

Figure 4 shows an interesting phenomenon that happens when the threshold is
1.0. The first time step shows the number of perfect agents and the number of broken
connections, when the threshold is 1.0. In time step 16, the number of broken con-
nections increases and the number of perfect agents decreases. The number of broken
connections increases more until time step 19 and then starts to decrease with slight
oscillations. However, up to time step 100, there are still broken connections in the
network. The number of perfect agents decreases from time step 16 to 20 and starts to
increase again with slight oscillations, but not all of the agents become perfect agents
even by time step 100.
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Table 6 Parameters for

Experiment 4 (Fig. 5) Number of Runs 30
Timesteps 30
Network size 2000
Neighbor size 10
Reward discount 0.9
Threshold 0.9
Memory size 15
Fig. 5 Network with threshold Experiment 4: Threshold 0.9, Memory size 15
0.9 and memory size 15
6000.
5000. \
4000. Number of
\ Broken
3000. Connections
\ = = = Number of
2000. DYt Perfect
\ s Agents
1000. &
S
0. o o T T T T T T T——p—r——r——————
1357 911131517192123252729

Timesteps

At time step 16, because the memory size is only 15, agents begin to “forget”
about the bad rewards they received in the first few turns. As a consequence, the
weighted average reward for the agent rises quickly, and becomes higher than the
weighted average reward for a certain few neighbors. Therefore, the agent chooses to
break up with the neighbors, even though they have rewarded the agent in all of their
interactions, except for the first few turns.

After time step 16, because of new connections, disconnections also happen.
Agents acquire new friends though their actions could differ from the agent’s. The
agents should therefore disconnect the new relationship again. This is the reason that
the network fails to have a network size of perfect agents even until time step 100.

By lowering the threshold, we can make the agents more tolerant of their neighbors
and thus eliminate the peak. Also, we can change the memory size of the agents to
control the time at which the peak appears. In order to support our argument, we ran a
second trial with exactly the same setup, except at a threshold of 0.9. The parameters
presented in Table 6 were used for the second part of experiment 4.

In Fig. 5, we see patterns similar to ones in Fig. 4, except without a peak. The
number of broken connections and number of perfect agents intersect at time step 7
and diverge afterwards. The agents here only remember half of their entire interac-
tions during one run of the simulation. With a threshold of 0.9, the agents are less
strict and more tolerant of uncoordinated friends. Therefore, there is almost no con-
nection being broken off once the network enters the stable clustering state. For these
reasons, this particular experiment reaches a smooth equilibrium, unlike Fig. 4.
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Table 7 Parameters for

Experiment 4 (Fig. 6) Number of Runs 30
Timesteps 30
Network size 2000
Neighbor size 10
Reward discount 0.9
Threshold 1.0
Memory size 20
Fig. 6 Network with Threshold Experiment 4: Threshold 1.0, Memory size 20
1.0 and Memory size 20 6000
5000
4000 == Number of Pefrect Agents
= Number of Broken Connection
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Timesteps

Through this comparison, we can see that the existence of a peak (tolerance) is in
direct relationship to the value of the threshold. We now can examine the relationship
between the peak and the size of memory. The following trial is carried out with a
memory size of 20 and a threshold of 1.0. The parameters presented in Table 7 were
used for the third part of experiment 4.

As we can see in Fig. 6, when memory size grows from 15 to 20, the time for
the peak to emerge is also pushed back by about 5 turns, thus further supporting our
earlier stated theory.

6.6 Scalability

In this experiment, we examine the scalability of the network. We run different trials
on various sizes of networks; in each network, the size of the neighborhood is 0.3%
of the size of the whole network. The parameters presented in Table 8 were used for
Experiment 5.

As we can see in Fig. 7, small networks generally converge faster than large net-
works. However, once a certain level is reached, the size matters little and the speed of
convergence remains almost constant. Though the neighborhood size varies in each
trial, the relative size to the network constantly remains 0.3%. It appears that the rel-
ative size of the neighborhood is the key factor that decides the convergence speed of
the network. The following parameters in Table 9 were used for Experiment 6.
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Table 8 Parameters for

Experiment 5 (Fig. 7) Number of Runs 30 for each network size
Timesteps 50
Network size 1000-10,000
Neighbor size 0.3% of network size
Reward discount 0.9
Threshold 0.9
Memory size 30
Fig. 7 Converging speed of 20
90% of network
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Table 9 Parameters for

Experiment 6 (Figs. 8 and 9) Number of Runs >0
Timesteps 30
Network size 5000
Neighbor size 10
Reward discount 0.9
Threshold 0.9
Memory size 30

6.7 Comparison with static network

At the beginning of this paper, we claimed that we created this dynamic network
in order to model modern dynamic networks that traditional static networks fail to
model. In order to show this point more clearly, we carried out a comparison simula-
tion between dynamic and static networks.

Figure 8 shows the results from a dynamic network and Fig. 9 shows the results
forms a static network. First, the most obvious difference between these two trials
may be the cumulative number of changed agents. The cumulative number of changed
agents measures how many times the agents in the network change their actions.
While the number for the dynamic network is only about 9000 changes, it is as high
as 20,000 for the static network. Because in a dynamic network agents can maximize
their rewards not only through changing actions but also through finding coordinating
neighbors, agents need to change their actions less frequently than they do in static
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Fig. 9 Pattern in static network

network, in which all of the agents have to switch to one action in order to maximize
the rewards received from the entire network. In addition, we noticed that a dynamic
network also converges much faster than a static network. It only takes about 12
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Table 10 Parameters for

Experiment 7 (Fig. 10) Number of Runs 30
Timesteps 30
Network size 2000
Friend size 20
Reward discount 0.95
Threshold 0.9
Memory size 15
Fig. 10 Tolerance trial with Experiment 7: Threshold 0.9
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rounds for a dynamic network to converge while it takes about 20 rounds for a static
network. It appears that, by changing their neighbors, the agents can maximize their
rewards in a much shorter period of time.

6.8 Tolerance

Because an agent evaluates its neighbors based on their cumulative rewards rather
than the reward of one single time step, this experiment verifies the cumulative prop-
erties of the reward system for agent behavior. Occasionally we expect an agent to
tolerate its friend’s non-coordinating action because of their shared positive history.
We also know that a higher threshold gives a lower tolerance. The parameters pre-
sented in Table 10 were used for the first part of experiment 7.

The parameters presented in Table 11 were used for the second part of experi-
ment 7.

Figures 10 and 11 show two trials with thresholds of 0.9 and 0.7, respectively.
As we can see from the plots, in both trials the agents are tolerating some of their
neighbors. In addition, when the threshold is low (Threshold 0.7, Tolerated Agents
around 9000 at peak), agents are tolerating more neighbors than they do with a high
threshold (Threshold 0.9, Tolerated Agents around 6000 at peak).
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Table 11 Parameters for

Experiment 7 (Fig. 11) Number of Runs 30
Timesteps 30
Network size 2000
Friend size 20
Reward discount 0.95
Threshold 0.7
Memory size 15
Fig. 11 Tolerance trial with a Experiment 7: Threshold 0.7
threshold of 0.7
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7 Discussion

In Sect. 5, we proved that a stable clustering state emerges given a long enough period
of time. However, as we can see from the experiments, the network usually converges
very quickly. In most cases, the network can reach the stable clustering state within 20
time steps. This phenomenon is not uncommon, considering the nature of the HWR
rule. Because an agent will not change its own action when there are an equal number
of neighbors with different actions, the agent is more likely, statistically speaking, to
stay with the current action during each time step. In other words, agents have a
natural tendency to stick to one action. Once the agent in lodged in a coordination
action dominant neighborhood, it becomes unlikely that the agent would change its
action again. In order to make a change happen, a significant number of neighbors
need to change actions, which is unlikely given the stable natural tendency of the
agent. In addition, the more coordination neighbors an agent has, the more stable the
agent is. Conversely, an action-switching state, such as the whipping state described
in the proof, is very unstable. The longer the whipping process is, the less likely it is
that the whole process will happen. Given the above reasoning, the fast convergence
speed should be normal. This phenomenon further supports the strong correlation
between the HWR rule and the observed pattern. In fact, such examples are not hard
to find in everyday life. When a group of people goes out for lunch, each person
in the party usually has a preferred place. Even still, given enough time to discuss
and debate the matter, only one restaurant will remain. In order to dine altogether,
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people in the group will quickly abandon their personal preferences. Though our work
is mainly theoretical, our assumptions are based on real-life scenarios. The HWR
rule should be able to model any real-life scenario that meets our assumptions. In
particular, we expect to see similar patterns emerge in real-life communities in which
members behave in a manner comparable to a pure coordination game, choosing
their actions based on the simple majority rule, and granting the right to choose their
neighbors. For example, our model can be used to study the formation of interest
groups, social activity clubs or even political parties, in which people tend to stay
close to others who share the same interests or opinions. The parameters of the model
can be further modified to fit different scenarios.

8 Conclusion

The HWR rule enables agents to increase their rewards not only by switching ac-
tions but also by updating neighborhoods. As our results show, agents adopting the
HWR rule are able to change the network structure to maximize their own interests.
Even though such agents behave selfishly, the network nonetheless reaches a Pareto-
optimum social convention in the end.

Although the HWR rule is simple and easy to understand, we have observed a wide
range of patterns emerging from our experimental results. Future research would do
well to explore more fully the potential of this dynamic network model. This future
research could pursue two paths.

The first avenue of exploration is the phenomenon of tolerance. As we have seen in
the network, the agents adopting the HWR rule occasionally tolerate bad neighbors.
In fact, this phenomenon was expected when we first designed the HRN and HWR
rules. The point of allowing agents to evaluate their neighbors based on history rather
than the most recent action is to allow the agents to keep the good neighbors who
once were non-rewarding for very few turns. Though this phenomenon was observed
in the network, it did not bring significant changes to the network structure. Moreover
we had little control over its influence. The primary cause of this effect is the simple
majority rule. Although the simple majority rule has been widely acknowledged and
adopted in much research, the assumption it makes is rather unrealistic. Under the
simple majority rule, agents should immediately switch their action once they have
observed a majority performing a different action. However, this is apparently not
the case in the real world. Human beings tend to be much more stubborn about their
choices. People will not change their beliefs immediately after they see a majority
of different beliefs. It usually takes a long time to change one’s habits or beliefs, if
it’s possible at all. Therefore, in order to replicate the stubbornness of human beings,
one could include in the model a new parameter called resistance. The resistance,
r, would be an integer value larger than or equal to 1. It would simply refer to how
many turns an agent could stay in a non-coordinating neighborhood until it changed
its action. For example, if r = 3, then the agent would need to play with a majority
of non-coordinate neighborhood three consecutive turns in order to change its action.
We believe that by introducing the resistance value, tolerance could play a larger and
much more important role in the model.
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A second avenue of research would be to open up the constraints on our model.
For instance, agents could be allowed in the current model to be added and removed,
thus creating a new model dynamic from a different aspect. One could then compare
the patterns of this new model with our existing model and study the differences. One
could also allow the agents to play games other than the Pure Coordination Game,
and study what social norms emerge with different games. Having done such work,
we could further explore the possibilities of dynamic networks in various ways.
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