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ABSTRACT 

In many real-world scenarios, the underlying network over 
which the diffusions and propagations spread is 
unobserved, i.e. the edges of the network are invisible. In 
such cases, we can only infer the network structure from 
underlying observations. The goal of this paper is to find a 
model that generates realistic cascades with observed data, 
so that it can help us with link prediction and outlier 
detection. For this purpose, we investigate two cascade 
models. The first model is a naive two-class cascades that 
includes one class of positive (infected) nodes and one 
class of negative (uninfected) nodes. In this model, we use 
the sparse logistic regression method to infer network 
edges. In the second model, we discard all negative training 
nodes and treat the whole network as a single class. In this 
model, we use the one-class Support Vector Machines to 
predict underlying edges. Experiments show that even if we 
discarded all negative training instances, we can still infer 
network edges accurately. 
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1 INTRODUCTION 

Processes that form cascades in a social network have 
been studied in a number of domains [12]. Examples 
include the spread of infectious diseases [6], the 
spread of new ideas and technologies [14], marketing 
[5], technology transfers [3, 4], computer virus 
transmission [2], and power systems [17]. Edges are 
very fundamental parts of a network to investigate 
the network structure. However, in many real world 
situations, the edges of a network are invisible and 
we can observe partial information about the edges. 
This information can help us infer the latent edges in 
the network. As a fundamental process in social 
network, cascade is a useful information source to 
infer edges. In general, a cascade describes how a 
contagion spreads or propagates across a network 
[16]. Research on cascade will enable us to gain 
insights about how people influence each other. 
However, sometimes it is very difficult to track a 

cascade because of its complexity. Even worse, we 
may not know the structure of the network over 
which the cascade happens. In most cases, the 
available information is very limited. We may only 
know when the cascade propagates to a given node. 
For instance, in study of virus contagion, tracking the 
time when a person was infected may be much easier 
than tracking the source of the infection. In viral 
marketing, we can easily record the time when a 
customer made a purchase, but it is hard to know who 
had influenced him to make the decision. Therefore, 
the challenging task is to infer the latent network 
structure from the limited given information. 
Specially, we may only know the nodes, and sets of 
time data from a few cascades, but not the edges in 
the network. Our goal is to infer the hidden edges 
based on these limited information.  

There are a few recent works focusing on 
inferring networks from cascades. Leskovec et al. 
[10] monitor one of the largest available collections 
of blog information and find that almost any metric 
they examined, such as size of cascades, size of 
blogs, and in- and out-degrees, follows a power law 
distribution.  

Gomez-Rodriguez, Leskovec and Krause [11] 
convert the edge inference problem to combinatorial 
optimization problem [7]. They find that choosing the 
best set of k edges maximizing the likelihood of the 
data is NP-hard. They then develop NETINF, a 
greedy algorithm for inferring a near-optimal set of k 
directed edges. NETINF is able to scale to large real 
data sets by introducing some speed-up heuristics 
based on the submodularity of their evaluation 
function.  

Myers and Leskovec [9] formulate the edge 
inference problem to an equivalent convex problem. 
This guarantees the optimality of the solution. In 
addition, they observe that social networks are sparse 
in a sense that on average nodes are connected to a 
constant number rather than a constant fraction of 
other nodes in the network. To enforce a sparse 
solution, they add the L1 penalty regulation to the 
evaluation function.  



Sadikov, Medina, Leskovec, and Garciamolina 
[13] address the problem of missing data in 
information cascades [8]. They propose a k-tree 
model of cascade (k is the number of parents for a 
node) to predict the missing data such as the size or 
depth of the tree. By given a fraction of a complete 
cascade C, they present a selection algorithm to select 
a proxy k-tree that best approximates C. 

Yang and Leskovec [15] develop a Linear 
Influence Model to infer the influence of a node from 
cascades. Different from predicting which node will 
influence which other nodes in the network, they 
focus on modeling the global influence of a node on 
the rate of diffusion through the (implicit) network. 
For each node, they estimate an influence function of 
how many subsequent infections can be attributed to 
the influence of that node over time. Therefore the 
number of newly infected nodes is a function of 
which other nodes got infected in the past.  

In this paper, we model the edge inference 
problem to the traditional classification problem. We 
investigate two models for inferring edges from 
cascades. The first model is a two-class cascades that 
includes one class of positive (infected) nodes and 
one class of negative (uninfected) nodes. Here, we 
use the sparse logistic regression method to infer 
network edges. The second model discards all 
negative training nodes and treats the whole network 
as a single class. We use the one-class Support 
Vector Machines to predict underlying edges. 
Experiments show that the second model (the single 
class model) can still infer network edges accurately. 

The paper is structured as follows: Section 2 
formulates our problem and defines our assumptions. 
Section 3 presents the two models in theoretic 
approach. Section 4 presents and discusses the 
analysis results. Section 5 concludes the paper.  

2 PROBLEM FORMULATION 

Given a graph of n nodes G = (V, E). The edge set E 
is unknown. Also given a set of cascades, each 
cascade is represented by a vector {1, …, n} where 
i indicates that node i is infected at time i. If i = , 
node i is not infected in the cascade. The problem is 
to infer the edges E from these cascades. Our idea is 
based on two assumptions: 1) earlier infected nodes 
may have edges to nodes infected later, and 2) 
infected nodes are very unlikely to have edges to 
uninfected nodes. 

3 MODELS 

3.1 Model A 

Before proposing the model, let’s present our 
assumptions first. [9] assumes the time period each 

infected node takes to transmit the disease follows a 
random distribution. However, we notice there is 
some inconsistency between the model assumption 
and the objective function. Inspired by the maximum 
likelihood estimation in [9], we propose another 
assumption that an uninfected person i is not always 
susceptible to infection, and will only be infected 
when he shows up in the network. For instance, for 
cascades in blog sphere, one will not be influenced 
by other persons' blog-posts if he constantly stays 
off-line. The already infected person, say j, will 
decide whether or not to infect person i with 
probability Aij. If j chooses to infect i, he will wait 
until person i shows up and then try to infect him. 
The probability of i being infected when he shows up 
can be defined in various ways to finish model 
assumption. 

There are two points about our assumption:  
1) Before getting infected at time i, i can also show 

up at i` < i (e.g., access the Internet in the blog 
case). It is not clear whether he was infected at 
that time. Either infected or not can be possible. 
It may be the case that he was infected, but we 
did not observe his infection at that time. 
Therefore to avoid ambiguity, we do not take a 
person's history before his infection into account.  

2) For node i, which is never infected, we assume 
that he will not get infected whenever he shows 
up. To satisfy this, other infected node must not 
choose to infect node i, otherwise there will be a 
probability of i being infected when shows up. 
Hence the probability of i never infected is 

∏ ሺ1 െ ௜௝ሻ௝ ௜௡௙௘௖௧௘ௗܣ                                   (1) 

Moreover, instead of assuming infected people 
transmit the virus to a susceptible one independently, 
we assume they impose a collective influence. This 
assumption is very common in real world. For 
instance, when one wants to purchase a product 
online, he may first check its online reviews and then 
make the decision. In other words, the other people 
who have already bought the product influence the 
person collectively through reviews. We still 
maintain the assumption that a susceptible person 
will only get infected when he shows up. Different 
from the above model, we do not keep the restriction 
that Aij ranges between 0 and 1, but assume it can 
take any real value. Large positive value for Aij 
means that the person j is very likely to infect person 
i, while negative value indicates that the person j may 
prevent the person i from being infected (can be 
interpreted as i distrusts j very much). When i shows 
up at time i, the influence of j on i is w(i  j)Aij, 
where w(t) is the distribution defined in [9]. The 
collective influence on person i at i is  



∑ ሺݓሺ߬௜ െ ௝߬ሻܣ௜௝ሻఛೕழఛ೔
                               (2) 

Finally, we assume that the collective influence on 
person i who has never been infected is  

∏ ௜`௝௝ ௜௡௙௘௖௧௘ௗܣ                                            (3) 

as explained in the above section. 
We now try to understand the above definition in 

another way. Each node i is associated with a set of 
cascades. In some cascades, node i was infected at i, 
while in others i never got infected. For a cascade in 
which an node i infected at i, the vector contains 
non-zero entry w(i  j) for every j such that j < i. 
For a cascade in which node i never infected, the 
vector contains entry 1 for every already infected 
node. The ith row of A, denoted Ai, is the weight 
vector characterizing how much node i trust other 
nodes. The probability of node i infected at i or 
never infected is a function of the dot product () 
between feature and weight vector. Then we reduce 
the cascade problem to a classification problem: we 
have some positive and negative instances, which are 
respectively different cascades in which node i got 
infected or not. For each instance we have a feature 
vector. And we would like to infer the weight vector 
from the provided training data. Then we may adopt 
some efficient discriminate model such as logistic 
regression, SVM (Support Vector Machines). If we 
want to guarantee sparsity of |A|, we may use sparse 
logistic regression. One possible advantage of this 
model over [9] is that we do not have an inconvenient 
product of terms like  

1 െ ∏ ሺ1 െ ሺ߬௜ݓ െ ௝߬ሻܣ௜௝ሻఛೕழఛ೔
                 (4) 

To summarize, we now mathematically define 
the above idea. For a certain node i, we have a set of 
ni instances ሼݔሺ௝ሻ, ሺ௝ሻሽ௝ୀଵݕ

௡೔ . Here y(j){0, 1} 
represents whether node i is infected in cascade j. 
And x(j) is a vector (ݔ଴

௝, …, ݔ௞
௝, …, ݔ௡

௝) with entry ݔ௞
௝ 

to be 

௞ݔ
௝
ൌ ൜ݓ൫߬௜

௝
െ ߬௞

௝
൯      ߬௞

௝
൏ ߬௜

௝
 

݁ݏ݈݁                   0
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for yi = 1, and  

௞ݔ
௝
ൌ ቄ

 ݀݁ݐ݂ܿ݁݊݅ ݏ݅ ݆      1
݁ݏ݈݁                        0

                         (6) 

for yi = 0. We would like to learn from the training 
set our transmission weight Ai = (A1i, …, Ani) and a 
hypothesis hAi: x  y. We use logistic function to 

݄஺ሺݔሻ ൌ
ଵ

ଵା௘షሺಲ೔ሻ
೅ೣ

                                        (7) 

And assume that 

p(y = 1 | x, Ai) = hA(x) 
p(y = 0 | x, Ai) = 1  hA(x)                            (8) 

The objective function we would like to maximize is 

ܨ  ൌ ∑ ௜ݕ log ቀ݄஺ሺݔ
௜ሻቁ ൅ ሺ1 െ ௜ሻݕ

௡೔
௜ୀଵ log ሺ1 െ

݄஺ሺݔ
௜ሻሻሻ ൅  ௜||ଵ                                       (9)ܣ||ߛ

Finally we use the large scale sparse logistic 
regression package [1] to solve the above objective 
function. 

3.2 Model B 

In the above section, we cast the network inference 
problem to be a binary classification problem and 
treat the cascades containing node i to be positive 
instances and those not containing i to be negative 
instances. We implicitly assume that the cascades not 
containing i indicate that there are no edges between i 
and previously infected edges. However, we claim 
that second assumption is presumptuous. There are 
lots of examples against this assumption. We take 
hashtag propagation as an example. Here each 
hashtag is a cascade. There are many cascades that 
one user does not adopt a hashtag and some of the 
users he follows adopt that hashtag. These cascades 
are not evidences that there are no edges between 
node i and already infected nodes. Thus these 
negative instances are not truly negative. Treating 
them to be negative maybe harmful for inferring 
edges. On the other side, those positive instances 
(cascades containing node i) do indicate that there 
may be some edges between node i and some 
previously infected nodes. Those we are facing a 
problem of only having confident positive instances. 
It is lucky that there have been many works dealing 
with problems which only contain only positive 
instances. Such problems are called one-class 
classification problem. By definition, one class 
classification aims distinguish one class of objects 
from all other possible objects, by learning from a 
training set containing only the objects of that class. 
This is exactly the problem we want to solve. It also 
worth mentions that there are many provided easy-to-
use software packages for one-class classification. 

The other advantage of modeling network 
inference to be a one-class classification problem is 
that training the model will be more efficient. Indeed, 
in many situations, the proportion of positive 
instances in which node i is infected is very small. 
Thus our training data size will be significantly 
reduced if we only consider the positive instances. 

The one-class classification problem can be 
formulated as follows: 

Min 
ଵ

ଶ
 |w|2 + 

ଵ

௩௟
∑ ߳௜ െ ௡ߩ
௜ୀଵ  

subject to w  xi    ϵ୧                                  (10) 
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4 EXPERIMENT 

4.1 Datasets 

As in [11, 9], there are two categories of datasets we 
are considering using: synthetic datasets and real 
world datasets. The synthetic dataset is mainly used 
for debugging programs. For this milestone, we only 
use synthetic datasets. The dataset we used is similar 
to the one in [9]. That is, we generate an Erdos 
random graph. For each generated edge, we randomly 
generate the transmission weight Aij. Then we try to 
generate a set of cascades. For each cascade, we 
randomly generate a start node and take it as the 
newly infected node. Then we iteratively simulate the 
cascading process. Pick the node i with the earliest 
infection time from the set of newly infected node. 
For the picked node, decide whether to infect the 
other uninfected node based on the transmission 
weight Aij. If node i choose to infect j, then randomly 
generate a time tij according to a specific distribution. 
If node j is not in the newly infected node set, add it 
to the set. If it is already in the set and tij is smaller 
than its infection time, update the infection time. 
Finally we remove node i from the newly infected 
node. In this way we can generate a cascade. As in 
[9], we also generate enough cascades for an 
informational training dataset. 

4.2 Model A 

We test whether a latent link can be inferred 
correctly. We compare the links inferred from the 
cascades with the links in real network and get the 
precision and recall of the model. For different choice 
of the sparsity parameter, precision is different. Thus 
we can plot a precision-recall curve. Note that we 
have connected the first point on the curve to (0; 1) 
and the last point to (1, 0). 

4.2.1 Results on Synthetical Datasets 

We tested our algorithm on synthetic datasets. As in 
[9], we generate an Erdos random graph consisting of 

512 nodes and 1024 edges. In the graph, the 
transmission probability Aij is sampled between 0.05 
and 1. 

For the time generation function w(t), we also 
tried three probability distributions detailed as 
follows: 

 Power law distribution (1)t-, where  = 9.5. 

 Exponential distribution 
ଵ

ఈ
݁ି

భ

ഀ
௧, where  = 9.5. 

 Weillbull distribution 
௞

ఈ
ሺ
௫

ఈ
ሻ௞ିଵ݁ሺି

ೣ

ഀ
ሻೖ, where  = 

9.5 and k = 2.3.  

Each cascade is generated as specified in 5.1. We 
generate enough cascades such that at least 95% 
edges are used to transmit a disease. 

We show the experimental results in Figure 1. 
We plot three precision-recall curves for the three 
generated networks. Each point on the curve 
corresponds the model trained by setting the sparsity 
parameter to a certain value. Different points on the 
curve reflect models with different sparsity 
parameters. When sparsity parameter decreases, the 
recall increases and the precision increases. 

Our model achieves very good performance 
comparable with, and even better than that obtained 
in [9]. However, it is quite weird that our model's 
performance is bad on the graph whose remission 
time is generated from a power law distribution. The 
reason is probably related to that our value of  is not 
the same as that set in [9]. We will try to find the 
reason in future work. 

Apart from the Erdos random graph, we also test 
our model on another random graph, which is 
generated from the preferential attachment 
mechanism as taught in class. We report our results 
in Figure 2. As in Erdos random graph, we also tried 
three different probability density functions for 
sampling transmission time. 

 

 

 

Fig. 1: PR curves for Erdos Random Graph Different Transmission Time Configurations



  

 
(c) Weillbull distribution 

 

 
(d) Exponential distribution 

 
 

 
(c)   Power law distribution 

 

 

Fig. 2: PR curves for Preferential Attachment Graph 
of Different Transmission Time Configurations 

4.2.2 Results on Real World Datasets 

Apart from synthetic dataset, we also tested our 
model on two real world datasets, specified as below: 
 An email network in a research institution 

consisted of 437 nodes and 2805 edges. 
 A collaboration network. We extract the largest 

component of the network. The number of nodes 
and edges are 379 and 608 respectively. 

For the collaboration network, we sampled the edge 
transmission probability Aij uniformly. For the email 

network, we set Aij = 1  (1  )ሺ1 െ ߳ሻ௠೔ೕ, where  
= 0:05, ߳ = 0:0001 and mij is the number of emails 
from i to j. This parameter set was suggested in [9]. 
For each network, we also adopted three different 
probability density functions for transmission time as 
in synthetic datasets. The parameters for those 
probability density functions are: 

 Power law distribution  = 2.5. 
 Exponential distribution  = 9.5.  
 Weillbull distribution  = 3.6 and k = 2.5.  
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Fig. 2: PR curves for Preferential Attachment Graph of Different Transmission Time 

Fig. 3: PR Curves for Email Network of Different Transmission Time Configurations 

Fig. 4: PR Curves for Collaboration Network of Different Transmission Time 



We reported our results in Figure 3 and Figure 4. 
Our model can also handle edge prediction for real 
world datasets. It seems that that our model 
performance is worse than that in [9]. However, we 
want to point out that our model has large 
improvement space because we do not use enough 
training data. Indeed, cascades we sampled only 
covered 90% edges, while those in [9] covered 99% 
edges. The reason that we did not sample as many 
cascades as in [9] is that in order to sample cascades 
to cover 95% edges, we need to sample much more 
cascades since for some uncovered edges, the 
transmission probability is very small. Since each 
cascade will be one additional instance for each node. 
Our laptop memory cannot hold that many instances. 
However, sampling more cascades for getting more 
training instances can improve the performance 
significantly. We tried sampling cascades to cover 
85% edges and 90% edges and tested each setting's 
performance. And the PR curve in the later setting 
lifted by 15 points. Thus we expect our model to be 
much better than its current state if our laptop 
memory can hold enough training instances. 

4.3 Model B 

In this section, we conducted experiments to test our 
model B. The data were generated as in the above 
experiments. However, we discarded all negative 
instances and only kept those positive instances for 
each node. We used one-class SVM component in 
libSVM to infer the edge weight. The libSVM tool 
does not provide the functionality of learning a sparse 
weight vector. Therefore we at this stage cannot get a 
PR curve with respect to the sparsity parameter as in 
the experiments in the above section. Thus in this 
experiment we evaluated our experiment from 
another perspective: we want to check whether the 
weights inferred by our model satisfy that the weights 
of the edges are bigger than the weights of the non-
edges. For instance, consider a graph with n nodes. 

We now want to investigate what nodes have links to 
node s. Without loss of generality, we suppose that 
nodes ݅ଵ

௦, ݅ଶଵ
௦ , …, ݅௠

௦  have links to node s. Then we 
rank all the nodes by our inferred weight vector ws. 
Suppose the top ranked m nodes are ݆ଵ

௦, ݆ଶ
௦, …, ݆௠

௦ . 
Then we count how many of our top ranked nodes 
have edges to node i, or we calculate the cardinality 
of the set {݅ଵ

௦, ݅ଶଵ
௦ , …, ݅௠

௦ }  {݆ଵ
௦, ݆ଶ

௦, …, ݆௠
௦ }. Suppose 

that: 
tts =  {݅ଵ

௦, ݅ଶଵ
௦ , …, ݅௠

௦ }  {݆ଵ
௦, ݆ଶ

௦, …, ݆௠
௦ }, 

tfs = {݅ଵ
௦, ݅ଶଵ

௦ , …, ݅௠
௦ }  {݆ଵ

௦, ݆ଶ
௦, …, ݆௠

௦ }, 

fts ={݆ଵ
௦, ݆ଶ

௦, …, ݆௠
௦ }  {݅ଵ

௦, ݅ଶଵ
௦ , …, ݅௠

௦ }.   (11) 

We use the following precision and recall to 
evaluate our model 

P = 
௧௧ೞ

௧௧ೞశ೑೟ೞ
 

R = 
௧௧ೞ

௧௧ೞశ೟೑ೞ
                                                (12) 

Notice that in this case, tfs = fts, leading to P = R. We 
only use precision to evaluate our model. The goal of 
the experiments is to show that when we have 
observed enough cascades, the edges in the network 
can also be inferred even if we discard all the 
negative instances. We investigated how the 
performance of our model change with respect to 
edge cover ratio. Here edge cover ratio means the 
proportion of edges covered by the generated 
cascades. The larger the cover ratio, the more 
cascades we generated. We show in Figure 5 and 6 
that the precision-cover ratio curve for two networks 
for different probability density function of 
transmission time. From the Figures, we can see that 
if the edge cover ratio is high enough, or number of 
cascades is large, then we may get satisfactory 
performance even if we do not consider negative 
instances. 
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Fig. 5: Precision-Cover Ratio of Preferential Attachment Network Configurations 
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5 CONCLUSION 

We investigated two models for inferring network 
edges from cascades. The first model is based on 
sparse logistic regression. It is easy to understand and 
both efficient and effective. Our second model is 
based on one-class SVM. Experiments showed that 
even if we discarded all negative training instances, 
we can also infer network edges accurately. 

In the future, we will test our model on larger 
scale data. One of the interesting data is the twitter 
dataset. Indeed, we have explored the twitter dataset. 
We once wanted to use hashtag propagation to infer 
the who following whom links. However, after a 
careful data analysis, we found that the hashtag 
propagation may not provide very useful information 
for inferring who following whom links. If possible, 
we may try some other evaluations. One possible way 
is to test whether our inferred latent network structure 
conveys information that is consistent with our 
intuition. For instance, from the inferred weight 
between pairs of nodes, we may discover several 
communities. Then we may check whether different 
communities have different interests (e.g., one 
community is interested in sports, while the other is 
interested in entertainment). 
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