
Two Models for Inferring Network Structure from
Cascades

 Dakan Wang and Yu Wu Yu Zhang
 Department of Computer Science Department of Computer Science
 Stanford University Trinity University
 Stanford, CA 94305, USA San Antonio, TX 77812, USA

 (vondrak, ywu2}@stanford.edu yzhang@trinity.edu

ABSTRACT

In many real-world scenarios, the underlying network over
which the diffusions and propagations spread is
unobserved, i.e. the edges of the network are invisible. In
such cases, we can only infer the network structure from
underlying observations. The goal of this paper is to find a
model that generates realistic cascades with observed data,
so that it can help us with link prediction and outlier
detection. For this purpose, we investigate two cascade
models. The first model is a naive two-class cascades that
includes one class of positive (infected) nodes and one
class of negative (uninfected) nodes. In this model, we use
the sparse logistic regression method to infer network
edges. In the second model, we discard all negative training
nodes and treat the whole network as a single class. In this
model, we use the one-class Support Vector Machines to
predict underlying edges. Experiments show that even if we
discarded all negative training instances, we can still infer
network edges accurately.

KEYWORDS

Social Network Structure, Information Cascades,
Networks of Diffusion

1 INTRODUCTION

Processes that form cascades in a social network have
been studied in a number of domains [12]. Examples
include the spread of infectious diseases [6], the
spread of new ideas and technologies [14], marketing
[5], technology transfers [3, 4], computer virus
transmission [2], and power systems [17]. Edges are
very fundamental parts of a network to investigate
the network structure. However, in many real world
situations, the edges of a network are invisible and
we can observe partial information about the edges.
This information can help us infer the latent edges in
the network. As a fundamental process in social
network, cascade is a useful information source to
infer edges. In general, a cascade describes how a
contagion spreads or propagates across a network
[16]. Research on cascade will enable us to gain
insights about how people influence each other.
However, sometimes it is very difficult to track a

cascade because of its complexity. Even worse, we
may not know the structure of the network over
which the cascade happens. In most cases, the
available information is very limited. We may only
know when the cascade propagates to a given node.
For instance, in study of virus contagion, tracking the
time when a person was infected may be much easier
than tracking the source of the infection. In viral
marketing, we can easily record the time when a
customer made a purchase, but it is hard to know who
had influenced him to make the decision. Therefore,
the challenging task is to infer the latent network
structure from the limited given information.
Specially, we may only know the nodes, and sets of
time data from a few cascades, but not the edges in
the network. Our goal is to infer the hidden edges
based on these limited information.

There are a few recent works focusing on
inferring networks from cascades. Leskovec et al.
[10] monitor one of the largest available collections
of blog information and find that almost any metric
they examined, such as size of cascades, size of
blogs, and in- and out-degrees, follows a power law
distribution.

Gomez-Rodriguez, Leskovec and Krause [11]
convert the edge inference problem to combinatorial
optimization problem [7]. They find that choosing the
best set of k edges maximizing the likelihood of the
data is NP-hard. They then develop NETINF, a
greedy algorithm for inferring a near-optimal set of k
directed edges. NETINF is able to scale to large real
data sets by introducing some speed-up heuristics
based on the submodularity of their evaluation
function.

Myers and Leskovec [9] formulate the edge
inference problem to an equivalent convex problem.
This guarantees the optimality of the solution. In
addition, they observe that social networks are sparse
in a sense that on average nodes are connected to a
constant number rather than a constant fraction of
other nodes in the network. To enforce a sparse
solution, they add the L1 penalty regulation to the
evaluation function.

Sadikov, Medina, Leskovec, and Garciamolina
[13] address the problem of missing data in
information cascades [8]. They propose a k-tree
model of cascade (k is the number of parents for a
node) to predict the missing data such as the size or
depth of the tree. By given a fraction of a complete
cascade C, they present a selection algorithm to select
a proxy k-tree that best approximates C.

Yang and Leskovec [15] develop a Linear
Influence Model to infer the influence of a node from
cascades. Different from predicting which node will
influence which other nodes in the network, they
focus on modeling the global influence of a node on
the rate of diffusion through the (implicit) network.
For each node, they estimate an influence function of
how many subsequent infections can be attributed to
the influence of that node over time. Therefore the
number of newly infected nodes is a function of
which other nodes got infected in the past.

In this paper, we model the edge inference
problem to the traditional classification problem. We
investigate two models for inferring edges from
cascades. The first model is a two-class cascades that
includes one class of positive (infected) nodes and
one class of negative (uninfected) nodes. Here, we
use the sparse logistic regression method to infer
network edges. The second model discards all
negative training nodes and treats the whole network
as a single class. We use the one-class Support
Vector Machines to predict underlying edges.
Experiments show that the second model (the single
class model) can still infer network edges accurately.

The paper is structured as follows: Section 2
formulates our problem and defines our assumptions.
Section 3 presents the two models in theoretic
approach. Section 4 presents and discusses the
analysis results. Section 5 concludes the paper.

2 PROBLEM FORMULATION

Given a graph of n nodes G = (V, E). The edge set E
is unknown. Also given a set of cascades, each
cascade is represented by a vector {1, …, n} where
i indicates that node i is infected at time i. If i = ,
node i is not infected in the cascade. The problem is
to infer the edges E from these cascades. Our idea is
based on two assumptions: 1) earlier infected nodes
may have edges to nodes infected later, and 2)
infected nodes are very unlikely to have edges to
uninfected nodes.

3 MODELS

3.1 Model A

Before proposing the model, let’s present our
assumptions first. [9] assumes the time period each

infected node takes to transmit the disease follows a
random distribution. However, we notice there is
some inconsistency between the model assumption
and the objective function. Inspired by the maximum
likelihood estimation in [9], we propose another
assumption that an uninfected person i is not always
susceptible to infection, and will only be infected
when he shows up in the network. For instance, for
cascades in blog sphere, one will not be influenced
by other persons' blog-posts if he constantly stays
off-line. The already infected person, say j, will
decide whether or not to infect person i with
probability Aij. If j chooses to infect i, he will wait
until person i shows up and then try to infect him.
The probability of i being infected when he shows up
can be defined in various ways to finish model
assumption.

There are two points about our assumption:
1) Before getting infected at time i, i can also show

up at i` < i (e.g., access the Internet in the blog
case). It is not clear whether he was infected at
that time. Either infected or not can be possible.
It may be the case that he was infected, but we
did not observe his infection at that time.
Therefore to avoid ambiguity, we do not take a
person's history before his infection into account.

2) For node i, which is never infected, we assume
that he will not get infected whenever he shows
up. To satisfy this, other infected node must not
choose to infect node i, otherwise there will be a
probability of i being infected when shows up.
Hence the probability of i never infected is

∏ ሺ1 െ ௜௝ሻ௝ ௜௡௙௘௖௧௘ௗܣ (1)

Moreover, instead of assuming infected people
transmit the virus to a susceptible one independently,
we assume they impose a collective influence. This
assumption is very common in real world. For
instance, when one wants to purchase a product
online, he may first check its online reviews and then
make the decision. In other words, the other people
who have already bought the product influence the
person collectively through reviews. We still
maintain the assumption that a susceptible person
will only get infected when he shows up. Different
from the above model, we do not keep the restriction
that Aij ranges between 0 and 1, but assume it can
take any real value. Large positive value for Aij
means that the person j is very likely to infect person
i, while negative value indicates that the person j may
prevent the person i from being infected (can be
interpreted as i distrusts j very much). When i shows
up at time i, the influence of j on i is w(i  j)Aij,
where w(t) is the distribution defined in [9]. The
collective influence on person i at i is

∑ ሺݓሺ߬௜ െ ௝߬ሻܣ௜௝ሻఛೕழఛ೔
 (2)

Finally, we assume that the collective influence on
person i who has never been infected is

∏ ௜`௝௝ ௜௡௙௘௖௧௘ௗܣ (3)

as explained in the above section.
We now try to understand the above definition in

another way. Each node i is associated with a set of
cascades. In some cascades, node i was infected at i,
while in others i never got infected. For a cascade in
which an node i infected at i, the vector contains
non-zero entry w(i  j) for every j such that j < i.
For a cascade in which node i never infected, the
vector contains entry 1 for every already infected
node. The ith row of A, denoted Ai, is the weight
vector characterizing how much node i trust other
nodes. The probability of node i infected at i or
never infected is a function of the dot product ()
between feature and weight vector. Then we reduce
the cascade problem to a classification problem: we
have some positive and negative instances, which are
respectively different cascades in which node i got
infected or not. For each instance we have a feature
vector. And we would like to infer the weight vector
from the provided training data. Then we may adopt
some efficient discriminate model such as logistic
regression, SVM (Support Vector Machines). If we
want to guarantee sparsity of |A|, we may use sparse
logistic regression. One possible advantage of this
model over [9] is that we do not have an inconvenient
product of terms like

1 െ ∏ ሺ1 െ ሺ߬௜ݓ െ ௝߬ሻܣ௜௝ሻఛೕழఛ೔
 (4)

To summarize, we now mathematically define
the above idea. For a certain node i, we have a set of
ni instances ሼݔሺ௝ሻ, ሺ௝ሻሽ௝ୀଵݕ

௡೔ . Here y(j){0, 1}
represents whether node i is infected in cascade j.
And x(j) is a vector (ݔ଴

௝, …, ݔ௞
௝, …, ݔ௡

௝) with entry ݔ௞
௝

to be

௞ݔ
௝
ൌ ൜ݓ൫߬௜

௝
െ ߬௞

௝
൯ ߬௞

௝
൏ ߬௜

௝

݁ݏ݈݁ 0
 (5)

for yi = 1, and

௞ݔ
௝
ൌ ቄ

 ݀݁ݐ݂ܿ݁݊݅ ݏ݅ ݆ 1
݁ݏ݈݁ 0

 (6)

for yi = 0. We would like to learn from the training
set our transmission weight Ai = (A1i, …, Ani) and a
hypothesis hAi: x  y. We use logistic function to

݄஺ሺݔሻ ൌ
ଵ

ଵା௘షሺಲ೔ሻ
೅ೣ

 (7)

And assume that

p(y = 1 | x, Ai) = hA(x)
p(y = 0 | x, Ai) = 1  hA(x) (8)

The objective function we would like to maximize is

ܨ ൌ ∑ ௜ݕ log ቀ݄஺ሺݔ
௜ሻቁ ൅ ሺ1 െ ௜ሻݕ

௡೔
௜ୀଵ log ሺ1 െ

݄஺ሺݔ
௜ሻሻሻ ൅ ௜||ଵ (9)ܣ||ߛ

Finally we use the large scale sparse logistic
regression package [1] to solve the above objective
function.

3.2 Model B

In the above section, we cast the network inference
problem to be a binary classification problem and
treat the cascades containing node i to be positive
instances and those not containing i to be negative
instances. We implicitly assume that the cascades not
containing i indicate that there are no edges between i
and previously infected edges. However, we claim
that second assumption is presumptuous. There are
lots of examples against this assumption. We take
hashtag propagation as an example. Here each
hashtag is a cascade. There are many cascades that
one user does not adopt a hashtag and some of the
users he follows adopt that hashtag. These cascades
are not evidences that there are no edges between
node i and already infected nodes. Thus these
negative instances are not truly negative. Treating
them to be negative maybe harmful for inferring
edges. On the other side, those positive instances
(cascades containing node i) do indicate that there
may be some edges between node i and some
previously infected nodes. Those we are facing a
problem of only having confident positive instances.
It is lucky that there have been many works dealing
with problems which only contain only positive
instances. Such problems are called one-class
classification problem. By definition, one class
classification aims distinguish one class of objects
from all other possible objects, by learning from a
training set containing only the objects of that class.
This is exactly the problem we want to solve. It also
worth mentions that there are many provided easy-to-
use software packages for one-class classification.

The other advantage of modeling network
inference to be a one-class classification problem is
that training the model will be more efficient. Indeed,
in many situations, the proportion of positive
instances in which node i is infected is very small.
Thus our training data size will be significantly
reduced if we only consider the positive instances.

The one-class classification problem can be
formulated as follows:

Min
ଵ

ଶ
 |w|2 +

ଵ

௩௟
∑ ߳௜ െ ௡ߩ
௜ୀଵ

subject to w  xi    ϵ୧ (10)

(a) Weillbull distribution

(b) Exponential distribution

(c) Power law distribution

4 EXPERIMENT

4.1 Datasets

As in [11, 9], there are two categories of datasets we
are considering using: synthetic datasets and real
world datasets. The synthetic dataset is mainly used
for debugging programs. For this milestone, we only
use synthetic datasets. The dataset we used is similar
to the one in [9]. That is, we generate an Erdos
random graph. For each generated edge, we randomly
generate the transmission weight Aij. Then we try to
generate a set of cascades. For each cascade, we
randomly generate a start node and take it as the
newly infected node. Then we iteratively simulate the
cascading process. Pick the node i with the earliest
infection time from the set of newly infected node.
For the picked node, decide whether to infect the
other uninfected node based on the transmission
weight Aij. If node i choose to infect j, then randomly
generate a time tij according to a specific distribution.
If node j is not in the newly infected node set, add it
to the set. If it is already in the set and tij is smaller
than its infection time, update the infection time.
Finally we remove node i from the newly infected
node. In this way we can generate a cascade. As in
[9], we also generate enough cascades for an
informational training dataset.

4.2 Model A

We test whether a latent link can be inferred
correctly. We compare the links inferred from the
cascades with the links in real network and get the
precision and recall of the model. For different choice
of the sparsity parameter, precision is different. Thus
we can plot a precision-recall curve. Note that we
have connected the first point on the curve to (0; 1)
and the last point to (1, 0).

4.2.1 Results on Synthetical Datasets

We tested our algorithm on synthetic datasets. As in
[9], we generate an Erdos random graph consisting of

512 nodes and 1024 edges. In the graph, the
transmission probability Aij is sampled between 0.05
and 1.

For the time generation function w(t), we also
tried three probability distributions detailed as
follows:

 Power law distribution (1)t-, where  = 9.5.

 Exponential distribution
ଵ

ఈ
݁ି

భ

ഀ
௧, where  = 9.5.

 Weillbull distribution
௞

ఈ
ሺ
௫

ఈ
ሻ௞ିଵ݁ሺି

ೣ

ഀ
ሻೖ, where  =

9.5 and k = 2.3.

Each cascade is generated as specified in 5.1. We
generate enough cascades such that at least 95%
edges are used to transmit a disease.

We show the experimental results in Figure 1.
We plot three precision-recall curves for the three
generated networks. Each point on the curve
corresponds the model trained by setting the sparsity
parameter to a certain value. Different points on the
curve reflect models with different sparsity
parameters. When sparsity parameter decreases, the
recall increases and the precision increases.

Our model achieves very good performance
comparable with, and even better than that obtained
in [9]. However, it is quite weird that our model's
performance is bad on the graph whose remission
time is generated from a power law distribution. The
reason is probably related to that our value of  is not
the same as that set in [9]. We will try to find the
reason in future work.

Apart from the Erdos random graph, we also test
our model on another random graph, which is
generated from the preferential attachment
mechanism as taught in class. We report our results
in Figure 2. As in Erdos random graph, we also tried
three different probability density functions for
sampling transmission time.

Fig. 1: PR curves for Erdos Random Graph Different Transmission Time Configurations

(c) Weillbull distribution

(d) Exponential distribution

(c) Power law distribution

Fig. 2: PR curves for Preferential Attachment Graph
of Different Transmission Time Configurations

4.2.2 Results on Real World Datasets

Apart from synthetic dataset, we also tested our
model on two real world datasets, specified as below:
 An email network in a research institution

consisted of 437 nodes and 2805 edges.
 A collaboration network. We extract the largest

component of the network. The number of nodes
and edges are 379 and 608 respectively.

For the collaboration network, we sampled the edge
transmission probability Aij uniformly. For the email

network, we set Aij = 1  (1  )ሺ1 െ ߳ሻ௠೔ೕ, where 
= 0:05, ߳ = 0:0001 and mij is the number of emails
from i to j. This parameter set was suggested in [9].
For each network, we also adopted three different
probability density functions for transmission time as
in synthetic datasets. The parameters for those
probability density functions are:

 Power law distribution  = 2.5.
 Exponential distribution  = 9.5.
 Weillbull distribution  = 3.6 and k = 2.5.

(a) Weillbull distribution

(b) Exponential distribution

(c) Power law distribution

(a) Weillbull distribution

(b) Exponential distribution

(c) Power law distribution

Fig. 2: PR curves for Preferential Attachment Graph of Different Transmission Time

Fig. 3: PR Curves for Email Network of Different Transmission Time Configurations

Fig. 4: PR Curves for Collaboration Network of Different Transmission Time

We reported our results in Figure 3 and Figure 4.
Our model can also handle edge prediction for real
world datasets. It seems that that our model
performance is worse than that in [9]. However, we
want to point out that our model has large
improvement space because we do not use enough
training data. Indeed, cascades we sampled only
covered 90% edges, while those in [9] covered 99%
edges. The reason that we did not sample as many
cascades as in [9] is that in order to sample cascades
to cover 95% edges, we need to sample much more
cascades since for some uncovered edges, the
transmission probability is very small. Since each
cascade will be one additional instance for each node.
Our laptop memory cannot hold that many instances.
However, sampling more cascades for getting more
training instances can improve the performance
significantly. We tried sampling cascades to cover
85% edges and 90% edges and tested each setting's
performance. And the PR curve in the later setting
lifted by 15 points. Thus we expect our model to be
much better than its current state if our laptop
memory can hold enough training instances.

4.3 Model B

In this section, we conducted experiments to test our
model B. The data were generated as in the above
experiments. However, we discarded all negative
instances and only kept those positive instances for
each node. We used one-class SVM component in
libSVM to infer the edge weight. The libSVM tool
does not provide the functionality of learning a sparse
weight vector. Therefore we at this stage cannot get a
PR curve with respect to the sparsity parameter as in
the experiments in the above section. Thus in this
experiment we evaluated our experiment from
another perspective: we want to check whether the
weights inferred by our model satisfy that the weights
of the edges are bigger than the weights of the non-
edges. For instance, consider a graph with n nodes.

We now want to investigate what nodes have links to
node s. Without loss of generality, we suppose that
nodes ݅ଵ

௦, ݅ଶଵ
௦ , …, ݅௠

௦ have links to node s. Then we
rank all the nodes by our inferred weight vector ws.
Suppose the top ranked m nodes are ݆ଵ

௦, ݆ଶ
௦, …, ݆௠

௦ .
Then we count how many of our top ranked nodes
have edges to node i, or we calculate the cardinality
of the set {݅ଵ

௦, ݅ଶଵ
௦ , …, ݅௠

௦ }  {݆ଵ
௦, ݆ଶ

௦, …, ݆௠
௦ }. Suppose

that:
tts =  {݅ଵ

௦, ݅ଶଵ
௦ , …, ݅௠

௦ }  {݆ଵ
௦, ݆ଶ

௦, …, ݆௠
௦ },

tfs = {݅ଵ
௦, ݅ଶଵ

௦ , …, ݅௠
௦ }  {݆ଵ

௦, ݆ଶ
௦, …, ݆௠

௦ },

fts ={݆ଵ
௦, ݆ଶ

௦, …, ݆௠
௦ }  {݅ଵ

௦, ݅ଶଵ
௦ , …, ݅௠

௦ }. (11)

We use the following precision and recall to
evaluate our model

P =
௧௧ೞ

௧௧ೞశ೑೟ೞ

R =
௧௧ೞ

௧௧ೞశ೟೑ೞ
 (12)

Notice that in this case, tfs = fts, leading to P = R. We
only use precision to evaluate our model. The goal of
the experiments is to show that when we have
observed enough cascades, the edges in the network
can also be inferred even if we discard all the
negative instances. We investigated how the
performance of our model change with respect to
edge cover ratio. Here edge cover ratio means the
proportion of edges covered by the generated
cascades. The larger the cover ratio, the more
cascades we generated. We show in Figure 5 and 6
that the precision-cover ratio curve for two networks
for different probability density function of
transmission time. From the Figures, we can see that
if the edge cover ratio is high enough, or number of
cascades is large, then we may get satisfactory
performance even if we do not consider negative
instances.

(a) Weillbull distribution

(b) Exponential distribution

 (c) Power law distribution

Fig. 5: Precision-Cover Ratio of Preferential Attachment Network Configurations

(a) Weillbull distribution

(b) Exponential distribution

 (c) Power law distribution

5 CONCLUSION

We investigated two models for inferring network
edges from cascades. The first model is based on
sparse logistic regression. It is easy to understand and
both efficient and effective. Our second model is
based on one-class SVM. Experiments showed that
even if we discarded all negative training instances,
we can also infer network edges accurately.

In the future, we will test our model on larger
scale data. One of the interesting data is the twitter
dataset. Indeed, we have explored the twitter dataset.
We once wanted to use hashtag propagation to infer
the who following whom links. However, after a
careful data analysis, we found that the hashtag
propagation may not provide very useful information
for inferring who following whom links. If possible,
we may try some other evaluations. One possible way
is to test whether our inferred latent network structure
conveys information that is consistent with our
intuition. For instance, from the inferred weight
between pairs of nodes, we may discover several
communities. Then we may check whether different
communities have different interests (e.g., one
community is interested in sports, while the other is
interested in entertainment).

REFERENCES

[1] http://www.stanford.edu/~boyd/.
[2] Albert R, Jeong H and Barabasi A, Error and

attack tolerance of complex networks, Nature,
406: 378-382, 2000.

[3] Bass F, A new product growth model for
consumer durables, Management Science, 15:
215-227, 1969.

[4] Brown J and Reinegen P, Social ties and word-
of-mouth referral behavior, Journal of Consumer
Research, 14(3): 350-362, 1987.

[5] Domingos P and Richardson M. Mining the
network value of customers. ACM, 2001.

[6] Gladwell M. The Tipping Point. Little Brown,
2000.

[7] Kempe D, Kleinberg JM, and Tardos E.
Maximizing the spread of influence through a
social network. In the 9th ACM SIGKDD
International Conference on Knowlwdge
Discivery and Data Mining, Pp. 137–146, 2003.

[8] Kossinets G. Effects of missing data in social
networks. Social Networks, 28:247–268, 2006.

[9] Myers S and Leskovec J. On the convexity of
latent social network inference. In Advances in
Neural Information Processing Sytsems, 23,
edited by J. Lafferty, C. K. I. Williams, J.
Shawe-Taylor, R.S. Zemel and A. Culotta, 2010.

[10] Leskovec J, Mcglohon M, Faloutsos C, Glance
N, and Hurst M. Cascading behavior in large
blog graphs. In WSDM, 2007.

[11] Rodriguez MG, Leskovec J, and Krause A,
Inferring networks of diffusion and influence. In
proceedings of the 16th ACM SIGKDD
international conference on Knowledge
discovery and data mining, pp. 1019-1028, 2010.

[12] Rogers EM. Diffusion of Innovations. Free
Press, 1995.

[13] Sadikov E, Medina M, Leskovec J, and
Garciamolina H. Correcting for missing data in
information cascades. In Proceedings of
WSDM’2011, pp.55~64, 2010.

[14] Surowiecki J. The Wisdom of Crowds.
Random House, 2004.

[15] Yang J and Leskovec J. Modeling information
diffusion in implicit networks. In IEEE
International Conference on Data Mining,
Stanford InfoLab, 2010.

[16] Watts DJ and Dodds PS. Influentials,
networks, and public opinion formation. Journal
of Consumer Research, 34(4):441–458, 2007.

[17] Watts DJ, A simple model of global cascades
in random networks, in Proceedings of the
National Academy of Sciences, 99(9): 5766-
5771, 2002.

Fig. 6: Precision-Cover Ratio of Email Network Configurations

