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Abstract

We propose and evaluate five related algorithms that automat-
ically derive limited-size noun vocabularies from text doc-
uments of 2,000-30,000 words. The proposed algorithms
combine Personalized Page Rank and principles of informa-
tion maximization, and are applied to the WordNet graph
for nouns. For the best-performing algorithm the difference
between automatically generated reduced noun lexicons and
those created by human writers is approximately 1-2 Word-
Net edges per lexical item. Our results also indicate the
importance of performing word-sense disambiguation with
sentence-level context information at the earliest stage of
analysis.

Introduction

This paper explores algorithms for the automatic generation
of a limited size lexicon from a document, such that the lex-
icon covers as much as possible of the semantic space of
the original document, as specifically as possible. One mo-
tivation for this work stems from the fact that much of the
information available on the Web and in other electronic for-
mats is at best weakly structured via its encoding in natural
language. Access to this information can be facilitated by
artificial intelligence techniques that exploit the semantic re-
lations that bind concepts; however, resources that provide
rich representations of semantic relations, such as WordNet
(Miller 1995), also have lexicons that are large and have
word meanings that are difficult to discriminate. This is es-
pecially problematic when large, complex lexicons underlie
applications intended for novice users of a language or com-
puter interface.

A variety of techniques estimate adult mental lexicons to
contain between 14,000 and 238,000 unique words (Amano
and Kondo 1998). Hirsh and Nation have estimated that a
vocabulary of approximately 5,000 words suffices to read
unsimplified novels intended for teenage native speakers of
English (Hirsh and Nation 1992). Tasks for which a smaller,
simpler vocabulary is desirable include text summarization,
text paraphrase, and interaction with mobile devices or aug-
mentative communication devices.

To expand on the latter task, one type of Augmented and
Assistive Communication (AAC) system includes a touch-
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screen, from which users can select icons that may, alone or
in combination, represent specific words or phrases (Baker
1982).1 Note that an AAC icon set represents a set of con-
cepts customized by a human expert to a particular user.
There is tension between ensuring that the collection of
icons is large enough to be sufficiently expressive and ensur-
ing that it is small enough to allow for efficient navigation
and maximal communication speed, a major issue with AAC
systems (Trnka et al. 2009). One might design the icon set
beginning with a text corpus representing typical utterances
of the user – perhaps from a log file kept by a communica-
tion device – and generate an icon set with more, and more
specific icons for topics of frequent communication.

In the sections that follow, we describe five methods for
generating a reduced lexicon from a document-derived vo-
cabulary, describe measures to evaluate the quality of the
resulting lexicons, and apply them to the five algorithms. In
the final section we interpret our results with respect to other
approaches that have similar aims.

Methods

In this initial work, we limit our focus to nouns. Given a
starting document in standard English, we extract all and
only its nouns using the Stanford Part of Speech Tagger
(Toutanova and Manning 2000), and reduce each to its base
uninflected form using WordNet’s morphstr method. The
list of nouns, together with a count of the occurrences of
each, is called the starting vocabulary. From this, we au-
tomatically generate a much smaller reduced lexicon and,
when materials exist, seek to compare this lexicon to the set
of nouns used by a human author who wrote a simplified
article on the same topic. We developed and tested five ap-
proaches for generating the reduced lexicon.

Personalized PageRank, Top-N (PPR-N)

The most direct algorithm generates a reduced lexicon di-
rectly from the results of the Personalized PageRank algo-
rithm (PPR). PPR was originally developed to perform un-
supervised word sense disambiguation (Agirre and Soroa

1Users with appropriate levels of literacy and motor control
may be able to type on an alphabetic keyboard; these are not the
users we are primarily concerned with in this work, but see (Wand-
macher et al. 2008; Trnka et al. 2009).
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2009). In PPR-N, for each noun appearing in the starting
document, we find the corresponding synset(s) in WordNet
and assign them weights proportional to the count of occur-
rences of the noun. All other synsets are initialized with
weight zero. The PageRank algorithm underlying PPR per-
mits synsets to vote for one another depending on WordNet’s
graph structure and the weight of each synset. This “voting”
process is iterated until it converges to a stable solution that
ranks vertices in a graph based on their relative importance.

We ran the implementation of PPR distributed by Agirre
and Soroa2 on this starting configuration, and the N highest-
weight synsets in the result comprise the reduced lexicon H .
Given any noun in the original vocabulary, we can traverse
up the tree from it until we reach a node that is a member
of the lexicon; we say this is the lexicon element that covers
the noun. Note that a lexicon H generated by PPR-N will
not necessarily cover every noun.

Greedy Algorithm to Generate a Reduced Lexicon

For our other four approaches, we begin with the starting vo-
cabulary and use it to generate a base set of WordNet synsets
representing these nouns. The four approaches create a re-
duced lexicon by applying the same greedy algorithm to a
base set; they differ in how the base set is selected. We first
describe the greedy algorithm, and then outline the four ap-
proaches to base set construction.

We construct a subtree of WordNet containing all the el-
ements of our base set and all of their WordNet ancestors
(hypernyms). Note that the WordNet graph for nouns is a
tree with the root node containing the word entity. We add
to each node a count: for leaves, this is the number of oc-
currences of that word sense in the original document, while
for internal nodes, this is the sum of the counts of the node’s
children plus its own number of occurrences in the docu-
ment. A hypernym set H is a set of nodes; as for PPR-N,
a noun in the base set is said to be covered by its nearest
ancestor that is in H .

The greedy algorithm simply works its way down the
WordNet subtree, at each step greedily adding the “best”
child to the growing lexicon; see Figure 1. Note that the
sequence of choices of locally “best” children may not lead
to a globally optimal solution.

The information gained when a child is added to the tree
is computed via the equation
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where c is the number of word occurrences covered by the
child synset and p is the number of word occurrences cov-
ered by its parent. At each iteration, the above equation
guarantees that the node that maximizes information gain,
given prior choices, is added to H; the number of word oc-
currences it covers is subtracted from its parent’s count, as
the newly added node is now the covering synset for those
occurrences. If the parent synset no longer covers any word
occurrences then it is removed from H . Iterations continue
until H reaches its target size.

2http://ixa2.si.ehu.es/ukb/

Note that if all word occurrences are initially covered by
the root node then since nodes are only removed from the H
set if they no longer cover any occurrence, it follows that all
words in the initial vocabulary are still covered by the result-
ing H set. In future work, we may wish to relax this require-
ment, leaving a small number of relatively uncommon words
uncovered in order to provide more specific hypernyms for
more commonly used words.

Base Set Selection

In generating the base set (of synsets) from the starting vo-
cabulary (of words), the main issue is that many nouns have
multiple senses; thus we must have some form of word sense
disambiguation (Navigli 2009), and of apportioning the oc-
currences of a vocabulary word among its senses. The four
ways we generate base sets are described next.

No Disambiguation (Greedy alone) Each word’s number
of occurrences is credited to every one of its senses, so the
base set consists of all senses of every noun in the document.

Full PPR-based Word Sense Disambiguation (PPR-
W2W-G) PPR was originally intended as a technique for
word-sense disambiguation within sentence-like contexts.
The version of the PPR algorithm we use here disambiguates
one word at a time by concentrating weight on the senses of
words occurring near it in the original text. Agirre and Soroa
found best disambiguation performance with this method,
which they call w2w (Agirre and Soroa 2009). In PPR-
W2W-G the w2w variant of PPR is first applied to extract
a single sense (synset) for each noun occurrence in the doc-
ument. The base set consists of these synsets.

Estimated Proportions of Word Sense Occurrences
(PPR-WSD-G) Full PPR-W2W word sense disambigua-
tion takes from several hours to several days for the docu-
ments we studied. In this approach, we avoided doing full
disambiguation of each noun occurrence. Instead we cre-
ated a “context” consisting of the full set of nouns appear-
ing in the document. Weight was assigned to every sense
of each noun, proportional to the number of occurrences of
that noun. PPR was run on this context, which we antic-
ipated would concentrate weight in those parts of the tree
where multiple weighty synsets reinforced each other.

The base set was then generated as follows: for each word
in the initial vocabulary, all its WordNet senses were ranked
in decreasing order of their PPR-generated weights. The
senses whose weights were less than 30% of the highest
weight for this word were eliminated; the count of occur-
rences of this word was then distributed over the remaining
senses, proportional to their PPR weights. Thus if the word
“cat” appeared in the document 100 times, and if PPR as-
signed weight 10 to the feline synset and weight 5 to the guy
synset (and less than 3 to all other “cat” senses) then the fe-
line synset would be assigned a vocabulary word count of 67
and the guy synset a count of 33.

Direct Use of PPR Results (PPR-VOC-G) In this ap-
proach the entire initial vocabulary list was treated as a con-
text for the PPR algorithm, and the base set simply consisted
of the highest-weighted synsets. We chose to let our base set
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Initialize hypernym set H to contain the root of the tree: {entity}
While H has not reached its final size,

for each child c of each element p in H,
compute information gained by adding c to H

select the child, x, with the maximal information gain; insert it into H
subtract x’s count from its parent’s count
if x’s parent no longer covers any vocabulary, remove x’s parent from H

Figure 1: Pseudocode for greedy algorithm

be approximately the same size as the starting list of unique
nouns in the document. The PPR weights were multiplica-
tively scaled to provide the “counts” for this base set.

Once the base set is generated, by whichever method, the
tree is constructed and the greedy algorithm of Figure 1 is
used to generate the hypernym set, as described earlier.

Evaluation of Lexicons

The algorithms described generate reduced lexicons that are
designed to be much smaller than the lexicon of the original
document. Although the algorithms also apply to the verbs,
adjectives, and adverbs found in WordNet, those WordNet
structures are less studied and in some cases do not have tree
structure. We therefore limited our initial study to nouns in
order to focus on evaluation within a single well-developed
part of the WordNet knowledge base. Our primary evalu-
ation of the algorithms is based on a comparison of lexi-
cons from human-simplified text with those we generate al-
gorithmically from non-simplified text. Articles and simpli-
fied versions of articles on the same topics were obtained
from the English and Simple English Wikipedia (Wikipedia
2010). Simplified articles are not direct simplifications of
original articles from the English Wikipedia, but a simpli-
fied article generally covers a subset of those topics covered
by the original article.

Text and Simplified Text Corpora

All five algorithms were applied to a set of ten articles (Ta-
ble 1) found in the Simple English Wikipedia. We selected
articles from the Simple English Wikipedia that were listed
as “good” simplified articles by managers of Wikipedia and
that had a majority of sections that appeared to correspond
to sections in articles in the English Wikipedia. In addi-
tion, we selected articles that had at least three paragraphs
of prose. All articles were edited to remove images, ta-
bles, and references. Only those topics, usually indicated
by sections, found in both the original and simplified article
were retained. We applied the Stanford Part of Speech Tag-
ger (Toutanova and Manning 2000) to isolate nouns from all
documents; resulting noun lexicons from simplified text are
30-71% the size of the original document’s noun vocabulary,
as shown in Table 2.

Evaluation Measures

Affinity Between Lexicon Entry and Hypernym In Re-
duced Lexicon Intuitively, we aim to generate a precise
lexicon, i.e. one in which the semantic distance between vo-
cabulary items and the reduced lexicon is minimized. (Thus

Identifier Article
A Snake
B City
C Chopsticks
D Red Riding Hood
E Monarch (butterfly)
F Saturn (planet)
G Gothic (architecture)
H Oklahoma (state)
I Human
J Evolution

Table 1: Dataset articles from the English Wikipedia and
Simple English Wikipedia.

the most precise lexicon is the original vocabulary.) To oper-
ationalize this, we experimented with a number of distance
measures based on path distance in the WordNet tree and ul-
timately adapted a scoring measure proposed in (Widdows
2003) which finds the distance in the WordNet subtree be-
tween a vocabulary word’s sense and its nearest ancestor
(hypernym) in the lexicon. Widdows calls the inverse square
of this distance the affinity score for that word.

Suppose there are N vocabulary word senses in the base
set, and dist(x) is the distance (number of edges plus one) in
the tree from a word sense x to its hypernym in the reduced
lexicon, or ∞ if there is no such hypernym. If c is defined to
be the weight (number of occurrences in the document) of
the current sense, and C is the summed weight of the entire
lexicon, then our distance measure is defined as:

1

C
∗

N∑
i=1

{
c

dist(i)2 if dist(i) �= ∞
−c
4 if dist(i) = ∞ (2)

For those algorithms in which no disambiguation is per-
formed, we calculate the score for each sense of a word and
average these scores. When disambiguation is performed,
the base set consists of synsets and there is no ambiguity
about the relevant sense. If a word or synset has no ances-
tor in the reduced lexicon, a penalty of -0.25 is added to the
score as shown in Equation 2. Affinity scores increase as
distance between synsets decreases.

Distance Between Vocabulary and Reduced Lexicon
When comparing a lexicon and a vocabulary, an intuitive
measure of difference is the semantic distance between a
word in the vocabulary and the nearest word in the lexi-
con. This intuition leads to the following definition of lexi-
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Article ID
A B C D E F G H I J

Sentences, wiki 81 86 140 110 177 183 269 224 374 421
Sentences, smpl-wiki 31 61 95 108 186 133 330 139 200 315
Nouns, wiki 448 585 757 770 1084 1152 1716 2109 2861 2983
Nouns, smpl-wiki 103 387 428 371 675 656 1509 621 888 1328
Unique Nouns, wiki 223 312 312 555 538 472 651 814 1290 908
Unique Nouns, smpl-wiki 68 141 212 226 321 249 462 287 427 566
Reduced Lexicon (%) 30 45 68 41 60 53 71 35 33 62

Table 2: Summary statistics for original and human-simplified articles from Wikipedia, listed in order of increasing vocabulary
size. Article titles corresponding to IDs are listed in Table 1. All rows are counts except the final row, which indicates ratio of
unique nouns in the simplified article to unique nouns in the full article.

con distance. Let d(a, b) denote a measure of semantic dis-
tance between words a and b, in this report measured by
the count of WordNet edges in the shortest path from a to
b. Suppose the vocabulary and reduced lexicon are repre-
sented as sets V and L, respectively. We define the distance
between a word, v ∈ V and (the entire) lexicon L to be
d(v, L) = minw∈Ld(v, w). This distance measure is asym-
metric, and we therefore define the distance between V and
L as follows:

d(L, V ) =

∑
v∈V d(v, L) +

∑
l∈L d(l, V )

2
(3)

In a finite graph such as WordNet the distance between
sets of selected nodes decreases as the proportion of nodes
selected in the tree grows. The lexicon distance measure
d(L, V ) will therefore decrease as the size of the lexicon
grows. This relationship was verified by generating random
lexicons from the 82,144 different noun synsets in WordNet
3.0 and then measuring the distance between the lexicons
using Equation 3. Figure 2 shows how the distance between
lexicons varies inversely with vocabulary size: the measure
decreases from about 8 to 3 as lexicon size increases from
20 to 4700 words, the size of noun vocabularies in this re-
port. This range establishes an inter-lexicon distance our
automatically generated lexicons should fall below; we cer-
tainly want to do better than a randomly generated lexicon!

Evaluation Results

Average affinity scores between vocabulary words and their
nearest hypernyms are shown in Table 3. Intervals were
generated using bootstrap resampling with 95% confidence.
Confidence intervals indicate a significant difference be-
tween the top two algorithms, Greedy and PPR-W2W-G. For
purposes of comparison, we note that these “best” scores are
lower than those reported by Widdows (Widdows 2003) for
class labels that correctly classify nouns. In that study Wid-
dows found that high affinity scores in the range (0.67, 0.91)
were indicative of correct class labels for common nouns,
but that affinity scores of about 0.57 indicated incorrect la-
bels.

We also explored how the size of the reduced lexicon af-
fects the affinity score; to give richer data, we used three

Figure 2: Distance (number of edges) between two random
noun lexicons, both of size N , as N is increased from 20 to
4700.

book-length documents dealing with agriculture, dog breed-
ing, and cooking, respectively. The results for the PPR-
W2W-G algorithm are shown in Figure 3. As expected, the
affinity increases with the lexicon’s size, since the lexicon
can encompass an increasing proportion of the initial vo-
cabulary. In order to reach the affinity of 0.67 proposed by
Widdows, the reduced lexicon should be at least 40-50% of
the size of the original noun set. The affinity score does not
reach 1.0 because a few nouns, such as proper nouns, are not
found in WordNet.

The lexicon distance measure provides a direct measure
of distance in WordNet for two vocabularies. The scores in
Table 4 list the distances between automatically reduced lex-
icons and the vocabulary from human-simplified text. Most
algorithms construct lexicons that are on average 1-2 edges
away from the manually simplified lexicon; these words are
much nearer than those in randomly selected lexicons, which
are experimentally measured as about 7 to 4 edges distant in
lexicons of size 100 to 1000, respectively. Based on the aver-
age results, the best performing algorithm is PPR-W2W-G,
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Algorithm Article ID Avg. 95% C.I.
A B C D E F G H I J

Greedy 0.05 0.23 0.26 0.28 0.33 0.30 0.51 0.35 0.33 0.52 0.32 (0.23,0.40)
PPR-N 0.00 0.00 -0.07 0.02 -0.04 -0.11 0.00 0.13 0.09 0.11 0.01 (-0.03,0.06)
PPR-V-G 0.07 0.13 0.12 0.12 0.12 0.10 0.14 0.22 0.17 0.20 0.14 (0.11,0.17)
PPR-WSD-G 0.12 0.14 0.12 0.13 0.14 0.11 0.18 0.21 0.19 0.18 0.15 (0.13,0.17)
PPR-W2W-G 0.36 0.57 0.74 0.74 0.72 0.63 0.83 0.56 0.55 0.79 0.65 (0.56,0.72)

Table 3: Average affinities between vocabulary words and their nearest hypernyms; higher is better. These results are for the
full, unsimplified Wikipedia articles. The averages and 95% confidence intervals are shown for each algorithm.

Algorithm Article Avg. 95% C.I.
A B C D E F G H I J

Greedy 2.58 3.08 2.17 2.34 1.75 1.91 1.75 1.85 1.52 1.48 2.04 (1.77, 2.37)
PPR-N 1.94 2.57 2.03 2.09 1.62 1.79 1.51 2.00 1.40 1.55 1.85 (1.66, 2.09)
PPR-V-G 1.72 2.68 2.21 2.19 1.73 1.85 1.59 1.85 1.25 1.60 1.87 (1.63, 2.12)
PPR-WSD-G 2.30 2.92 2.10 2.15 1.82 1.81 1.61 1.54 1.26 1.54 1.90 (1.63, 2.20)
PPR-W2W-G 2.18 1.99 1.48 1.64 1.23 1.26 1.32 1.43 1.33 1.17 1.50 (1.33, 1.73)

Table 4: Distances between reduced size noun lexicons, automatically generated from full Wikipedia articles, and noun vocab-
ularies extracted from the Simple English Wikipedia human-simplified articles on the same topics; lower is better.

which uses sentence contexts to disambiguate words prior
to creating the lexicon via the greedy algorithm. Word sense
disambiguation appears to improve the precision of the re-
duced lexicon in all cases, though it is only clearly signif-
icant when comparing PPR-W2W-G and the Greedy algo-
rithm.

Histograms of lexicon distance scores show that for most
of the algorithms, about 40% of the synsets for human-
simplified and automatically derived lexicons are identical.
A representative example, the histograms of distance scores
for the Evolution article for each of the five algorithms, is
shown in Figure 4. Histograms for the other articles are
quantitatively similar.

Figure 3: Affinity scores as a function of reduced vocabulary
size for three large documents. The total number of noun
occurrences in the document is indicated in parentheses.

Figure 4: Histogram of distance scores between reduced lex-
icon and vocabulary of human-simplified texts for the Evo-
lution article.

Conclusion

Among the five algorithms, we found significant differences
between an approach that ignores word senses and those that
incorporate them explicitly. The introduction of numerous
senses for every word, most of which are unintended in the
original document, introduces sense ambiguity that is not
overcome by document word counts, even if those counts are
readjusted to weight most likely senses. Early word sense
disambiguation takes advantage of phrase and sentence con-
text (unavailable at later stages of processing) which also
results in a smaller tree to be searched.

Our results show that the greedy maximization of infor-
mation can be combined with word sense disambiguation to
yield an algorithm for the automated generation of a reduced
lexicon for text documents. Although our algorithm does not
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explicitly select “simple” words for the lexicon, the com-
bined algorithm yields a lexicon in which most words are
only 1-2 edges away from human-simplified counterparts.
Since our greedy search of the WordNet noun taxonomy is
top-down, this suggests that many simplified words lie above
nouns from the original unsimplified version and are there-
fore more general than those in the original document.

Like some approaches to labeling, semantic tagging and
paraphrase, our algorithm relies on a lexical knowledge base
and its interaction with a text corpus. Green and Dorr note
that much of the difficulty with the paraphrase problem is
due to the fact that the same semantic content can be pre-
sented in numerous ways (Green and Dorr 2004). They pro-
pose a system, SemFrame, that is similar to this project in
its overall goal of producing a reduced-size noun set from
an initial set, and in its approach of finding covering nodes
in the WordNet noun tree. SemFrame generates names for
slots in semantic frames; starting with a collection of (a few
tens of) nouns semantically related to a particular verb sense
frameset, it reduces this set to a few possible frame slot de-
scriptions. Their work uses a measure of conceptual density
to select WordNet nodes to retain (Agirre and Rigau 1996); a
similar role is played by Eq. 1 in our approach. SemFrame’s
frame names were evaluated by human judges; the results
are not directly comparable to those we report.

A second task closely related to lexical reduction is the
semantic tagging of text with a relatively small set of class
labels. The objective of this work is the creation of a set of
class labels (i.e., a reduced lexicon) that covers a vocabu-
lary while minimizing ambiguity (Cucchiarelli and Velardi
1997). Rather than pursuing a linguistically motivated defi-
nition of lexical ambiguity, our approach, influenced by the
distance measures examined by Budanitsky and Hirst (Bu-
danitsky and Hirst 2006), seeks to maximize information,
leaving linguistic concerns to a later stage. We anticipate
that the inclusion of linguistic information (e.g., measures
of word difficulty) will guide our future work with text sim-
plification.

The algorithm presented here is not directly applicable to
verbs as they are represented in WordNet. The most signif-
icant impediment is that the graphs for verbs do not have a
common unique ancestor node, but have at least 15 different
head nodes and hundreds of verbs with no unique ancestor
(Richens 2008). We are currently exploring the application
of our approach to this more problematic word category.

A goal of our larger research project is to use a reduced
lexicon to select icons for an AAC interface. The mapping
from a reduced lexicon to an icon set may be complex, but
we initially plan to test a mapping that generates each icon
from a partition of the reduced vocabulary. Current AAC
systems use expert-selected icon sets that could be dynam-
ically reconfigured to select a small set of the most useful
icons if a means for automatically generating icon sets were
found.
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